Show simple item record

dc.contributor.author
Townsend, Kirk F.
dc.contributor.author
Gallen, Sean F.
dc.contributor.author
Clark, Marin K.
dc.date.accessioned
2020-08-03T14:51:24Z
dc.date.available
2020-08-02T03:08:58Z
dc.date.available
2020-08-03T14:51:24Z
dc.date.issued
2020-07
dc.identifier.issn
0148-0227
dc.identifier.issn
2169-9003
dc.identifier.issn
2169-9011
dc.identifier.other
10.1029/2020JF005665
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/429580
dc.description.abstract
Rock strength is a fundamental property of earth materials that influences the morphology of landscapes and modulates feedbacks between surface processes, tectonics, and climate. However, rock strength remains challenging to quantify over the broad spatial scales necessary for geomorphic investigations. Consequently, the factors that control rock strength in the near-surface environment (i.e., the critical zone) remain poorly understood. Here we quantify near-surface rock strength on a regional scale by exploiting two hillslope-stability models, which explicitly relate the balance of forces within a hillslope to Mohr-Coulomb strength parameters. We first use the Culmann finite-slope stability model to back-calculate static rock strength with high-density measurements of ridge-to-channel hillslope height and gradient. Second, we invert the Newmark infinite-slope stability model for strength using an earthquake peak ground acceleration model and coseismic landslide inventory. We apply these two model approaches to a recently inverted sedimentary basin in the eastern Topatopa Mountains of southern California, USA, where a tectonic gradient has exposed stratigraphic units with variable burial histories. Results show similar trends in strength with respect to stratigraphic position and have comparable strength estimates to the lowest values of published direct-shear test data. Cohesion estimates are low, with Culmann results ranging from 3 to 60 kPa and Newmark results from 6 to 30 kPa, while friction angle estimates range from 24° to 44° from the Culmann model. We find that maximum burial depth exerts the strongest control on the strength of these young sedimentary rocks, likely through diagenetic changes in porosity, cementation, and ultimately, lithification. © 2020 American Geophysical Union.
en_US
dc.language.iso
en
en_US
dc.publisher
American Geophysical Union
en_US
dc.title
Quantifying Near‐Surface Rock Strength on a Regional Scale From Hillslope Stability Models
en_US
dc.type
Journal Article
dc.date.published
2020-06-09
ethz.journal.title
Journal of Geophysical Research: Earth Surface
ethz.journal.volume
125
en_US
ethz.journal.issue
7
en_US
ethz.journal.abbreviated
J. geophys. res. Earth surf.
ethz.pages.start
e2020JF005665
en_US
ethz.size
19 p.
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Washington, DC
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2020-08-02T03:09:04Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-08-03T14:51:51Z
ethz.rosetta.lastUpdated
2022-03-29T02:44:50Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Quantifying%20Near%E2%80%90Surface%20Rock%20Strength%20on%20a%20Regional%20Scale%20From%20Hillslope%20Stability%20Models&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Earth%20Surface&rft.date=2020-07&rft.volume=125&rft.issue=7&rft.spage=e2020JF005665&rft.issn=0148-0227&2169-9003&2169-9011&rft.au=Townsend,%20Kirk%20F.&Gallen,%20Sean%20F.&Clark,%20Marin%20K.&rft.genre=article&rft_id=info:doi/10.1029/2020JF005665&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record