Ultra-Low-Power Intelligent Acoustic Sensing using Cochlea-Inspired Feature Extraction and DNN Classification
dc.contributor.author
Yang, Minhao
dc.contributor.author
Liu, Shih-Chii
dc.contributor.author
Seok, Mingoo
dc.contributor.author
Enz, Christian
dc.date.accessioned
2020-08-05T05:58:18Z
dc.date.available
2020-08-05T05:58:18Z
dc.date.issued
2019
dc.identifier.isbn
978-1-7281-0735-6
en_US
dc.identifier.isbn
978-1-7281-0734-9
en_US
dc.identifier.isbn
978-1-7281-0736-3
en_US
dc.identifier.other
10.1109/ASICON47005.2019.8983619
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/430023
dc.description.abstract
We present our recent progress in ultra-low-power intelligent acoustic sensing that harnesses the high power and energy efficiency of cochlea-like analog feature extraction and binarized neural network classification. Compared with conventional methods including the fast Fourier transform-based feature extraction plus neural network classification, and the more aggressive approach based on end-to-end neural network models, the analog filter bank-based handcrafted feature extraction inspired by mammalian cochlea has the promise of achieving the minimum power consumption for many existing and emerging always-on audio applications. System considerations and circuit techniques that are used to achieve the high power efficiency will be presented and comparison with some state-of-the-art works, and future directions will be discussed. © 2019 IEEE.
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.title
Ultra-Low-Power Intelligent Acoustic Sensing using Cochlea-Inspired Feature Extraction and DNN Classification
en_US
dc.type
Conference Paper
dc.date.published
2020-02-06
ethz.book.title
2019 IEEE 13th International Conference on ASIC (ASICON)
en_US
ethz.pages.start
8983619
en_US
ethz.size
4 p.
en_US
ethz.event
13th IEEE International Conference on ASIC (ASICON 2019)
en_US
ethz.event.location
Chongqing, China
en_US
ethz.event.date
October 29 - November 1, 2019
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2020-04-10T01:28:36Z
ethz.source
WOS
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-08-05T05:58:37Z
ethz.rosetta.lastUpdated
2020-08-05T05:58:37Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/424785
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/409221
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Ultra-Low-Power%20Intelligent%20Acoustic%20Sensing%20using%20Cochlea-Inspired%20Feature%20Extraction%20and%20DNN%20Classification&rft.date=2019&rft.spage=8983619&rft.au=Yang,%20Minhao&Liu,%20Shih-Chii&Seok,%20Mingoo&Enz,%20Christian&rft.isbn=978-1-7281-0735-6&978-1-7281-0734-9&978-1-7281-0736-3&rft.genre=proceeding&rft_id=info:doi/10.1109/ASICON47005.2019.8983619&rft.btitle=2019%20IEEE%2013th%20International%20Conference%20on%20ASIC%20(ASICON)
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [37068]