Show simple item record

dc.contributor.author
Eggimann, Manuel
dc.contributor.author
Erb, Jonas
dc.contributor.author
Mayer, Philipp
dc.contributor.author
Magno, Michele
dc.contributor.author
Benini, Luca
dc.date.accessioned
2020-08-05T11:42:30Z
dc.date.available
2020-08-05T11:42:30Z
dc.date.issued
2019
dc.identifier.isbn
978-1-7281-1634-1
en_US
dc.identifier.isbn
978-1-7281-1635-8
en_US
dc.identifier.other
10.1109/SENSORS43011.2019.8956617
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/430121
dc.description.abstract
This work proposes a low-power high-accuracy embedded hand-gesture recognition using low power short-range radar sensors. The hardware and software match the requirements for battery-operated wearable devices. A 2D Convolutional Neural Network (CNN) using range frequency Doppler features is combined with a Temporal Convolutional Neural Network (TCN) for time sequence prediction. The final algorithm has a model size of only 45723 parameters, yielding a memory footprint of only 91kB. Two datasets containing 11 challenging hand gestures performed by 26 different people have been recorded containing a total of 20210 gesture instances. On the 11 hands, gestures and an accuracy of 87% (26 users) and 92% (single user) have been achieved. Furthermore, the prediction algorithm has been implemented in the GAP8 Parallel Ultra-Low-Power processor by GreenWaves Technologies, showing that live-prediction is feasible with only 21mW of power consumption for the full gesture prediction neural network. © 2019 IEEE.
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.subject
Mini-Radar sensors
en_US
dc.subject
Gesture recognition
en_US
dc.subject
Embedded Artificial Intelligence
en_US
dc.subject
Low power
en_US
dc.subject
Wearable
en_US
dc.title
Low Power Embedded Gesture Recognition Using Novel Short-Range Radar Sensors
en_US
dc.type
Conference Paper
dc.date.published
2020-01-13
ethz.book.title
Proceedings of the 2019 IEEE Sensors
en_US
ethz.pages.start
8956617
en_US
ethz.size
4 p.
en_US
ethz.event
18th IEEE Sensors Conference (SENSORS 2019)
en_US
ethz.event.location
Montreal, Canada
en_US
ethz.event.date
October 27-30, 2019
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02636 - Institut für Integrierte Systeme / Integrated Systems Laboratory::03996 - Benini, Luca / Benini, Luca
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02636 - Institut für Integrierte Systeme / Integrated Systems Laboratory::03996 - Benini, Luca / Benini, Luca
ethz.date.deposited
2020-02-08T00:16:03Z
ethz.source
WOS
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-08-05T11:42:51Z
ethz.rosetta.lastUpdated
2023-02-06T20:15:57Z
ethz.rosetta.versionExported
true
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/426582
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/397678
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Low%20Power%20Embedded%20Gesture%20Recognition%20Using%20Novel%20Short-Range%20Radar%20Sensors&rft.date=2019&rft.spage=8956617&rft.au=Eggimann,%20Manuel&Erb,%20Jonas&Mayer,%20Philipp&Magno,%20Michele&Benini,%20Luca&rft.isbn=978-1-7281-1634-1&978-1-7281-1635-8&rft.genre=proceeding&rft_id=info:doi/10.1109/SENSORS43011.2019.8956617&rft.btitle=Proceedings%20of%20the%202019%20IEEE%20Sensors
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record