Species abundance information improves sequence taxonomy classification accuracy
Abstract
Popular naive Bayes taxonomic classifiers for amplicon sequences assume that all species in the reference database are equally likely to be observed. We demonstrate that classification accuracy degrades linearly with the degree to which that assumption is violated, and in practice it is always violated. By incorporating environment-specific taxonomic abundance information, we demonstrate a significant increase in the species-level classification accuracy across common sample types. At the species level, overall average error rates decline from 25% to 14%, which is favourably comparable to the error rates that existing classifiers achieve at the genus level (16%). Our findings indicate that for most practical purposes, the assumption that reference species are equally likely to be observed is untenable. q2-clawback provides a straightforward alternative for samples from common environments. Show more
Permanent link
https://doi.org/10.3929/ethz-b-000431166Publication status
publishedExternal links
Journal / series
Nature CommunicationsVolume
Pages / Article No.
Publisher
Nature Publishing GroupOrganisational unit
09714 - Bokulich, Nicholas / Bokulich, Nicholas
Related publications and datasets
Is new version of: https://doi.org/10.3929/ethz-b-000431207
More
Show all metadata
ETH Bibliography
no
Altmetrics