Show simple item record

dc.contributor.author
Di Luca, Matteo
dc.contributor.author
Mintchev, Stefano
dc.contributor.author
Su, Yunxing
dc.contributor.author
Shaw, Eric
dc.contributor.author
Breuer, Kenneth
dc.date.accessioned
2020-08-28T09:11:15Z
dc.date.available
2020-08-26T05:09:10Z
dc.date.available
2020-08-28T09:11:15Z
dc.date.issued
2020-01-29
dc.identifier.issn
2470-9476
dc.identifier.other
10.1126/scirobotics.aay8533
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/432659
dc.description.abstract
Small-scale drones have enough sensing and computing power to find use across a growing number of applications. However, flying in the low–Reynolds number regime remains challenging. High sensitivity to atmospheric turbulence compromises vehicle stability and control, and low aerodynamic efficiency limits flight duration. Conventional wing designs have thus far failed to address these two deficiencies simultaneously. Here, we draw inspiration from nature’s small flyers to design a wing with lift generation robust to gusts and freestream turbulence without sacrificing aerodynamic efficiency. This performance is achieved by forcing flow separation at the airfoil leading edge. Water and wind tunnel measurements are used to demonstrate the working principle and aerodynamic performance of the wing, showing a substantial reduction in the sensitivity of lift force production to freestream turbulence, as compared with the performance of an Eppler E423 low–Reynolds number wing. The minimum cruise power of a custom-built 104-gram fixed-wing drone equipped with the Separated Flow wing was measured in the wind tunnel indicating an upper limit for the flight time of 170 minutes, which is about four times higher than comparable existing fixed-wing drones. In addition, we present scaling guidelines and outline future design and manufacturing challenges.
en_US
dc.language.iso
en
en_US
dc.publisher
AAAS
dc.title
A bioinspired Separated Flow wing provides turbulence resilience and aerodynamic efficiency for miniature drones
en_US
dc.type
Journal Article
ethz.journal.title
Science Robotics
ethz.journal.volume
5
en_US
ethz.journal.issue
38
en_US
ethz.pages.start
eaay8533
en_US
ethz.size
9 p.
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02703 - Institut für Agrarwissenschaften / Institute of Agricultural Sciences::09718 - Mintchev, Stefano / Mintchev, Stefano
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02703 - Institut für Agrarwissenschaften / Institute of Agricultural Sciences::09718 - Mintchev, Stefano / Mintchev, Stefano
en_US
ethz.date.deposited
2020-08-26T05:09:21Z
ethz.source
FORM
ethz.eth
no
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-08-28T09:11:27Z
ethz.rosetta.lastUpdated
2024-02-02T11:56:13Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=A%20bioinspired%20Separated%20Flow%20wing%20provides%20turbulence%20resilience%20and%20aerodynamic%20efficiency%20for%20miniature%20drones&rft.jtitle=Science%20Robotics&rft.date=2020-01-29&rft.volume=5&rft.issue=38&rft.spage=eaay8533&rft.issn=2470-9476&rft.au=Di%20Luca,%20Matteo&Mintchev,%20Stefano&Su,%20Yunxing&Shaw,%20Eric&Breuer,%20Kenneth&rft.genre=article&rft_id=info:doi/10.1126/scirobotics.aay8533&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record