Show simple item record

dc.contributor.author
Evans, Donald M.
dc.contributor.author
Holstad, Theodor S.
dc.contributor.author
Mosberg, Aleksander B.
dc.contributor.author
Småbråten, Didrik R.
dc.contributor.author
Vullum, Per Erik
dc.contributor.author
Dadlani, Anup L.
dc.contributor.author
Shapovalov, Konstantin
dc.contributor.author
Yan, Zewu
dc.contributor.author
Bourret, Edith
dc.contributor.author
Gao, David
dc.contributor.author
Akola, Jaakko
dc.contributor.author
Torgersen, Jan
dc.contributor.author
van Helvoort, Antonius T. J.
dc.contributor.author
Selbach, Sverre M.
dc.contributor.author
Meier, Dennis
dc.date.accessioned
2020-10-30T17:18:33Z
dc.date.available
2020-09-04T20:02:19Z
dc.date.available
2020-09-09T06:37:09Z
dc.date.available
2020-10-30T17:18:33Z
dc.date.issued
2020-11
dc.identifier.issn
1476-1122
dc.identifier.issn
1476-4660
dc.identifier.other
10.1038/s41563-020-0765-x
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/438574
dc.description.abstract
Combining quantum effects with conductivity modulation in complex oxides requires mutually exclusive criteria, making applications difficult. Using tip-induced electrical generation of anti-Frenkel defects, conducting features in Er(Mn,Ti)O(3)are written with nanoscale precision while keeping structural integrity. Utilizing quantum effects in complex oxides, such as magnetism, multiferroicity and superconductivity, requires atomic-level control of the material's structure and composition. In contrast, the continuous conductivity changes that enable artificial oxide-based synapses and multiconfigurational devices are driven by redox reactions and domain reconfigurations, which entail long-range ionic migration and changes in stoichiometry or structure. Although both concepts hold great technological potential, combined applications seem difficult due to the mutually exclusive requirements. Here we demonstrate a route to overcome this limitation by controlling the conductivity in the functional oxide hexagonal Er(Mn,Ti)O(3)by using conductive atomic force microscopy to generate electric-field induced anti-Frenkel defects, that is, charge-neutral interstitial-vacancy pairs. These defects are generated with nanoscale spatial precision to locally enhance the electronic hopping conductivity by orders of magnitude without disturbing the ferroelectric order. We explain the non-volatile effects using density functional theory and discuss its universality, suggesting an alternative dimension to functional oxides and the development of multifunctional devices for next-generation nanotechnology.
en_US
dc.language.iso
en
en_US
dc.publisher
Nature Publishing Group
en_US
dc.title
Conductivity control via minimally invasive anti-Frenkel defects in a functional oxide
en_US
dc.type
Journal Article
dc.date.published
2020-08-17
ethz.journal.title
Nature Materials
ethz.journal.volume
19
en_US
ethz.journal.issue
11
en_US
ethz.journal.abbreviated
Nat. Mater.
ethz.pages.start
1195
en_US
ethz.pages.end
1200
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Basingstoke
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2020-09-04T20:02:33Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-10-30T17:18:44Z
ethz.rosetta.lastUpdated
2022-03-29T03:52:01Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Conductivity%20control%20via%20minimally%20invasive%20anti-Frenkel%20defects%20in%20a%20functional%20oxide&rft.jtitle=Nature%20Materials&rft.date=2020-11&rft.volume=19&rft.issue=11&rft.spage=1195&rft.epage=1200&rft.issn=1476-1122&1476-4660&rft.au=Evans,%20Donald%20M.&Holstad,%20Theodor%20S.&Mosberg,%20Aleksander%20B.&Sm%C3%A5br%C3%A5ten,%20Didrik%20R.&Vullum,%20Per%20Erik&rft.genre=article&rft_id=info:doi/10.1038/s41563-020-0765-x&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record