Lagrangian neural style transfer for fluids
dc.contributor.author
Kim, Byungsoo
dc.contributor.author
Azevedo, Vinicius C.
dc.contributor.author
Gross, Markus
dc.contributor.author
Solenthaler, Barbara
dc.date.accessioned
2020-09-10T13:28:28Z
dc.date.available
2020-09-04T20:11:55Z
dc.date.available
2020-09-10T13:28:28Z
dc.date.issued
2020-07
dc.identifier.issn
0730-0301
dc.identifier.issn
1557-7368
dc.identifier.other
10.1145/3386569.3392473
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/438588
dc.description.abstract
Artistically controlling the shape, motion and appearance of fluid simulations pose major challenges in visual effects production. In this paper, we present a neural style transfer approach from images to 3D fluids formulated in a Lagrangian viewpoint. Using particles for style transfer has unique benefits compared to grid-based techniques. Attributes are stored on the particles and hence are trivially transported by the particle motion. This intrinsically ensures temporal consistency of the optimized stylized structure and notably improves the resulting quality. Simultaneously, the expensive, recursive alignment of stylization velocity fields of grid approaches is unnecessary, reducing the computation time to less than an hour and rendering neural flow stylization practical in production settings. Moreover, the Lagrangian representation improves artistic control as it allows for multi-fluid stylization and consistent color transfer from images, and the generality of the method enables stylization of smoke and liquids likewise.© 2020 Association for Computing Machinery.
en_US
dc.language.iso
en
en_US
dc.publisher
Association for Computing Machinery
en_US
dc.subject
Physically-based animation
en_US
dc.subject
Fluid simulation
en_US
dc.subject
Deep learning
en_US
dc.subject
Neural style transfer
en_US
dc.title
Lagrangian neural style transfer for fluids
en_US
dc.type
Journal Article
dc.date.published
2020-07-08
ethz.journal.title
ACM Transactions on Graphics
ethz.journal.volume
39
en_US
ethz.journal.issue
4
en_US
ethz.journal.abbreviated
ACM trans. graph.
ethz.pages.start
52
en_US
ethz.size
10 p.
en_US
ethz.grant
Data-driven Methods for Artist-directed Physically-based Simulations
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
New York, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02659 - Institut für Visual Computing / Institute for Visual Computing::03420 - Gross, Markus / Gross, Markus
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02659 - Institut für Visual Computing / Institute for Visual Computing::03420 - Gross, Markus / Gross, Markus
ethz.grant.agreementno
168997
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projekte MINT
ethz.date.deposited
2020-09-04T20:12:06Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-09-10T13:28:41Z
ethz.rosetta.lastUpdated
2022-03-29T03:06:23Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Lagrangian%20neural%20style%20transfer%20for%20fluids&rft.jtitle=ACM%20Transactions%20on%20Graphics&rft.date=2020-07&rft.volume=39&rft.issue=4&rft.spage=52&rft.issn=0730-0301&1557-7368&rft.au=Kim,%20Byungsoo&Azevedo,%20Vinicius%20C.&Gross,%20Markus&Solenthaler,%20Barbara&rft.genre=article&rft_id=info:doi/10.1145/3386569.3392473&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Journal Article [130565]