Interfacial structure of upward gas–liquid annular flow in inclined pipes
dc.contributor.author
Fershtman, Adam
dc.contributor.author
Robers, Lukas
dc.contributor.author
Prasser, Horst-Michael
dc.contributor.author
Barnea, Dvora
dc.contributor.author
Shemer, Lev
dc.date.accessioned
2020-09-08T11:41:13Z
dc.date.available
2020-09-04T20:19:25Z
dc.date.available
2020-09-08T11:41:13Z
dc.date.issued
2020-11
dc.identifier.issn
0301-9322
dc.identifier.issn
1879-3533
dc.identifier.other
10.1016/j.ijmultiphaseflow.2020.103437
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/438640
dc.description.abstract
Temporal and spatial-resolved data on the interfacial structure in upward vertical and inclined two-phase annular flows were accumulated using a novel non-intrusive multilayer conductance sensor. The sensor provides simultaneous measurement of the film thickness across the entire pipe circumference, enabling a three dimensional reconstruction of the wavy interface. Measurements were performed for two liquid (water) flow rates and a single high gas (air) flow rate. Three types of interfacial waves were identified, including ripples, disturbance and rogue waves. Rogue waves can be described as an infrequent solitary disturbance wave propagating over a ripple-dominant interface. Detailed statistical properties of the interfacial shape, such as the mean film thickness, wave height distribution, wave frequency spectra, wave propagation velocities and more, were obtained as a function the pipe inclination and azimuthal angle. The statistical analysis of the wavy interface presented in this study sheds light on a complex flow pattern of annular flow in inclined pipes, which has remained relatively unstudied experimentally. For inclined pipes, gravity imposes an asymmetric film distribution resulting in the thickest film at the bottom of the pipe. At this location, waves attain larger amplitudes while maintaining slower propagation velocities as compared to smaller amplitude waves at the top of the pipe. Generally, the wave frequency throughout the pipe circumference increases with inclination angle. For a larger liquid flow rate, the interface was found to be primarily dominant by disturbance waves. For a lower liquid velocity, the interfacial structure was found to be highly dependent on both the azimuthal and the inclination angles. An interface wave type map is presented as a function of those angles. © 2020 Elsevier Ltd
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.title
Interfacial structure of upward gas–liquid annular flow in inclined pipes
en_US
dc.type
Journal Article
dc.date.published
2020-08-22
ethz.journal.title
International Journal of Multiphase Flow
ethz.journal.volume
132
en_US
ethz.journal.abbreviated
Int. j. multiph. flow
ethz.pages.start
103437
en_US
ethz.size
23 p.
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Amsterdam
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02668 - Inst. f. Energie- und Verfahrenstechnik / Inst. Energy and Process Engineering::03725 - Prasser, Horst-Michael (emeritus) / Prasser, Horst-Michael (emeritus)
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02668 - Inst. f. Energie- und Verfahrenstechnik / Inst. Energy and Process Engineering::03725 - Prasser, Horst-Michael (emeritus) / Prasser, Horst-Michael (emeritus)
ethz.date.deposited
2020-09-04T20:19:38Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-09-08T11:41:26Z
ethz.rosetta.lastUpdated
2021-02-15T17:04:01Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Interfacial%20structure%20of%20upward%20gas%E2%80%93liquid%20annular%20flow%20in%20inclined%20pipes&rft.jtitle=International%20Journal%20of%20Multiphase%20Flow&rft.date=2020-11&rft.volume=132&rft.spage=103437&rft.issn=0301-9322&1879-3533&rft.au=Fershtman,%20Adam&Robers,%20Lukas&Prasser,%20Horst-Michael&Barnea,%20Dvora&Shemer,%20Lev&rft.genre=article&rft_id=info:doi/10.1016/j.ijmultiphaseflow.2020.103437&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Journal Article [133216]