
Open access
Autor(in)
Datum
2020-08Typ
- Journal Article
Abstract
We discuss recent work for causal inference and predictive robustness in a unifying way. The key idea relies on a notion of probabilistic invariance or stability: it opens up new insights for formulating causality as a certain risk minimization problem with a corresponding notion of robustness. The invariance itself can be estimated from general heterogeneous or perturbation data which frequently occur with nowadays data collection. The novel methodology is potentially useful in many applications, offering more robustness and better "causal-oriented" interpretation than machine learning or estimation in standard regression or classification frameworks. Mehr anzeigen
Persistenter Link
https://doi.org/10.3929/ethz-b-000443280Publikationsstatus
publishedExterne Links
Zeitschrift / Serie
Statistical ScienceBand
Seiten / Artikelnummer
Verlag
Institute of Mathematical StatisticsThema
Anchor regression; causal regularization; distributional robustness; heterogeneous data; instrumental variables regression; interventional data; Random Forests; variable importanceOrganisationseinheit
03502 - Bühlmann, Peter L. / Bühlmann, Peter L.
Förderung
786461 - Statistics, Prediction and Causality for Large-Scale Data (EC)
Zugehörige Publikationen und Daten
Is referenced by: https://doi.org/10.3929/ethz-b-000443281