Seeded intervals and noise level estimation in change point detection: a discussion of Fryzlewicz (2020)
Metadata only
Datum
2020-12Typ
- Journal Article
Abstract
In this discussion, we compare the choice of seeded intervals and that of random intervals for change point segmentation from practical, statistical and computational perspectives. Furthermore, we investigate a novel estimator of the noise level, which improves many existing model selection procedures (including the steepest drop to low levels), particularly for challenging frequent change point scenarios with low signal-to-noise ratios. Mehr anzeigen
Publikationsstatus
publishedExterne Links
Zeitschrift / Serie
Journal of the Korean Statistical SocietyBand
Seiten / Artikelnummer
Verlag
SpringerThema
Break points; Fast computation; Model selection; Reproducibility; Seeded binary segmentation; Steepest drop to low levels; Variance estimation; Wild binary segmentation 2Organisationseinheit
03502 - Bühlmann, Peter L. / Bühlmann, Peter L.
Förderung
786461 - Statistics, Prediction and Causality for Large-Scale Data (EC)