A Generative Adversarial Network Approach to Calibration of Local Stochastic Volatility Models
dc.contributor.author
Cuchiero, Christa
dc.contributor.author
Khosrawi, Wahid
dc.contributor.author
Teichmann, Josef
dc.date.accessioned
2020-10-05T08:31:25Z
dc.date.available
2020-10-04T02:51:41Z
dc.date.available
2020-10-05T08:31:25Z
dc.date.issued
2020-12
dc.identifier.other
10.3390/risks8040101
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/444434
dc.identifier.doi
10.3929/ethz-b-000444434
dc.description.abstract
We propose a fully data-driven approach to calibrate local stochastic volatility (LSV) models, circumventing in particular the ad hoc interpolation of the volatility surface. To achieve this, we parametrize the leverage function by a family of feed-forward neural networks and learn their parameters directly from the available market option prices. This should be seen in the context of neural SDEs and (causal) generative adversarial networks: we generate volatility surfaces by specific neural SDEs, whose quality is assessed by quantifying, possibly in an adversarial manner, distances to market prices. The minimization of the calibration functional relies strongly on a variance reduction technique based on hedging and deep hedging, which is interesting in its own right: it allows the calculation of model prices and model implied volatilities in an accurate way using only small sets of sample paths. For numerical illustration we implement a SABR-type LSV model and conduct a thorough statistical performance analysis on many samples of implied volatility smiles, showing the accuracy and stability of the method.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
MDPI
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
LSV calibration
en_US
dc.subject
Neural SDEs
en_US
dc.subject
Generative adversarial networks
en_US
dc.subject
Deep hedging
en_US
dc.subject
Variance reduction
en_US
dc.subject
Stochastic optimization
en_US
dc.title
A Generative Adversarial Network Approach to Calibration of Local Stochastic Volatility Models
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2020-09-27
ethz.journal.title
Risks
ethz.journal.volume
8
en_US
ethz.journal.issue
4
en_US
ethz.pages.start
101
en_US
ethz.size
31
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Basel
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02003 - Mathematik Selbständige Professuren::03845 - Teichmann, Josef / Teichmann, Josef
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02003 - Mathematik Selbständige Professuren::03845 - Teichmann, Josef / Teichmann, Josef
ethz.date.deposited
2020-10-04T02:51:48Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-10-05T08:31:37Z
ethz.rosetta.lastUpdated
2021-02-15T17:49:04Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=A%20Generative%20Adversarial%20Network%20Approach%20to%20Calibration%20of%20Local%20Stochastic%20Volatility%20Models&rft.jtitle=Risks&rft.date=2020-12&rft.volume=8&rft.issue=4&rft.spage=101&rft.au=Cuchiero,%20Christa&Khosrawi,%20Wahid&Teichmann,%20Josef&rft.genre=article&rft_id=info:doi/10.3390/risks8040101&
Files in this item
Publication type
-
Journal Article [130488]