Show simple item record

dc.contributor.author
Cuenin, Jean-Claude
dc.contributor.author
Ibrogimov, Orif O.
dc.date.accessioned
2020-10-16T08:45:39Z
dc.date.available
2020-10-10T02:55:22Z
dc.date.available
2020-10-16T08:45:39Z
dc.date.issued
2021-01-01
dc.identifier.issn
0022-1236
dc.identifier.issn
1096-0783
dc.identifier.other
10.1016/j.jfa.2020.108804
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/445408
dc.description.abstract
We derive quantitative bounds for eigenvalues of complex perturbations of the indefinite Laplacian on the real line. Our results substantially improve existing results even for real potentials. For L1-potentials, we obtain optimal spectral enclosures which accommodate also embedded eigenvalues, while our result for Lp-potentials yield sharp spectral bounds on the imaginary parts of eigenvalues of the perturbed operator for all p ∈ [1, ∞). The sharpness of the results are demonstrated by means of explicit examples. © 2020 Elsevier Inc.
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.subject
Indefinite Laplacian
en_US
dc.subject
Spectrum
en_US
dc.subject
(Embedded) eigenvalue
en_US
dc.subject
Lieb-Thirring inequality
en_US
dc.title
Sharp spectral bounds for complex perturbations of the indefinite Laplacian
en_US
dc.type
Journal Article
dc.date.published
2020-09-28
ethz.journal.title
Journal of Functional Analysis
ethz.journal.volume
280
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
J. Funct. Anal.
ethz.pages.start
108804
en_US
ethz.size
26 p.
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Amsterdam
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2020-10-10T02:55:36Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-10-16T08:45:50Z
ethz.rosetta.lastUpdated
2021-02-15T18:24:57Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Sharp%20spectral%20bounds%20for%20complex%20perturbations%20of%20the%20indefinite%20Laplacian&rft.jtitle=Journal%20of%20Functional%20Analysis&rft.date=2021-01-01&rft.volume=280&rft.issue=1&rft.spage=108804&rft.issn=0022-1236&1096-0783&rft.au=Cuenin,%20Jean-Claude&Ibrogimov,%20Orif%20O.&rft.genre=article&rft_id=info:doi/10.1016/j.jfa.2020.108804&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record