A UAV-Based Machine Vision Algorithm for Industrial Gauge Detecting and Display Reading
dc.contributor.author
Li, Chun
dc.contributor.author
Zheng, Dehua
dc.contributor.author
Liu, Lizheng
dc.contributor.author
Zheng, Xiaochen
dc.date.accessioned
2020-10-21T12:04:46Z
dc.date.available
2020-10-11T05:15:23Z
dc.date.available
2020-10-21T12:04:46Z
dc.date.issued
2020
dc.identifier.isbn
978-1-7281-9818-7
en_US
dc.identifier.isbn
978-1-7281-9817-0
en_US
dc.identifier.isbn
978-1-7281-9819-4
en_US
dc.identifier.other
10.1109/ACIRS49895.2020.9162618
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/445426
dc.description.abstract
Unmanned Aerial Vehicle (UAV) has overwhelming superiority on the completion of difficult missions in the industrial production or implementation scenarios. Its brilliant navigation and on-board perception abilities endow the aerial platform a considerable potential in the industrial applications. Since manipulation stability and computational capacity of UAVs are crucial for industrial missions, it is challenging to develop a reliable and safe UAV platform for indoor industrial operation. Focusing on the measurement of industrial-standard gauges, we propose a vision algorithm which is capable of fast detecting the industrial-standard gauges and the readings and integrate the algorithm into a quadrotor drone platform with indoor and outdoor navigation. In our work, we demonstrate how to improve the simplicity and efficiency of the UAV-based visual recognition by implementing and adjusting a YOLO v3 framework with Darknet [1]. Moreover, our vision algorithm is combined with the image geometric correction module and the gauge detecting and reading module to overcome the detection problems caused by the harsh industrial conditions, such as an obscure image and the under-exposure condition. And the results show that accuracy of detection in the experimentation is sufficient for industrial missions. © 2020 IEEE
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.subject
UAV
en_US
dc.subject
Gauge display reading
en_US
dc.subject
Object detection
en_US
dc.subject
Deep learning
en_US
dc.title
A UAV-Based Machine Vision Algorithm for Industrial Gauge Detecting and Display Reading
en_US
dc.type
Conference Paper
dc.date.published
2020-08-10
ethz.book.title
2020 5th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS)
en_US
ethz.pages.start
109
en_US
ethz.pages.end
115
en_US
ethz.event
5th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS 2020) (virtual)
en_US
ethz.event.location
Singapore
en_US
ethz.event.date
July 22-24, 2020
en_US
ethz.notes
Due to the Coronavirus (COVID-19) the conference was conducted virtually.
en_US
ethz.identifier.scopus
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2020-10-11T05:15:29Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-10-21T12:04:57Z
ethz.rosetta.lastUpdated
2020-10-21T12:04:57Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=A%20UAV-Based%20Machine%20Vision%20Algorithm%20for%20Industrial%20Gauge%20Detecting%20and%20Display%20Reading&rft.date=2020&rft.spage=109&rft.epage=115&rft.au=Li,%20Chun&Zheng,%20Dehua&Liu,%20Lizheng&Zheng,%20Xiaochen&rft.isbn=978-1-7281-9818-7&978-1-7281-9817-0&978-1-7281-9819-4&rft.genre=proceeding&rft_id=info:doi/10.1109/ACIRS49895.2020.9162618&rft.btitle=2020%205th%20Asia-Pacific%20Conference%20on%20Intelligent%20Robot%20Systems%20(ACIRS)
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [33039]