Show simple item record

dc.contributor.author
Grohs, Philipp
dc.date.accessioned
2022-09-16T11:50:42Z
dc.date.available
2017-06-09T18:34:38Z
dc.date.available
2022-09-16T11:50:42Z
dc.date.issued
2012-07
dc.identifier.issn
1063-5203
dc.identifier.other
10.1016/j.acha.2011.09.004
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/44584
dc.description.abstract
In recent years anisotropic transforms like the shearlet or curvelet transform have received a considerable amount of interest due to their ability to efficiently capture anisotropic features in terms of nonlinear N-term approximation. In this paper we study tree-approximation properties of such transforms where the N-term approximant has to satisfy the additional constraint that the set of kept indices possesses a tree structure. The main result of this paper is that for shearlet- and related systems, this additional constraint does not deteriorate the approximation rate. As an application of our results we construct (almost) optimal encoding schemes for cartoon images.
en_US
dc.language.iso
en
en_US
dc.publisher
Academic Press
en_US
dc.subject
Shearlets
en_US
dc.subject
Curvelets
en_US
dc.subject
Tree approximation
en_US
dc.subject
Bit rate coding
en_US
dc.title
Tree Approximation with anisotropic decompositions
en_US
dc.type
Journal Article
dc.date.published
2011-09-24
ethz.journal.title
Applied and Computational Harmonic Analysis
ethz.journal.volume
33
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
Appl. comput. harmon. anal. (Print)
ethz.pages.start
44
en_US
ethz.pages.end
57
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
San Diego, CA
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich, direkt::00012 - Lehre und Forschung, direkt::00007 - Departemente, direkt::02000 - Departement Mathematik / Department of Mathematics::02501 - Seminar für Angewandte Mathematik (SAM) / Seminar for Applied Mathematics (SAM)::03941 - Grohs, Philipp (ehemalig)
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich, direkt::00012 - Lehre und Forschung, direkt::00007 - Departemente, direkt::02000 - Departement Mathematik / Department of Mathematics::02501 - Seminar für Angewandte Mathematik (SAM) / Seminar for Applied Mathematics (SAM)::03941 - Grohs, Philipp (ehemalig)
ethz.relation.isNewVersionOf
10.3929/ethz-a-010402052
ethz.date.deposited
2017-06-09T18:34:54Z
ethz.source
ECIT
ethz.identifier.importid
imp59364edd378d555267
ethz.ecitpid
pub:73520
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2017-07-17T09:06:11Z
ethz.rosetta.lastUpdated
2018-11-02T06:01:01Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Tree%20Approximation%20with%20anisotropic%20decompositions&rft.jtitle=Applied%20and%20Computational%20Harmonic%20Analysis&rft.date=2012-07&rft.volume=33&rft.issue=1&rft.spage=44&rft.epage=57&rft.issn=1063-5203&rft.au=Grohs,%20Philipp&rft.genre=article&rft_id=info:doi/10.1016/j.acha.2011.09.004&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record