Zur Kurzanzeige

dc.contributor.author
Epp, Robert
dc.contributor.author
Schmid, Franca
dc.contributor.author
Weber, Bruno
dc.contributor.author
Jenny, Patrick
dc.date.accessioned
2020-10-27T10:48:11Z
dc.date.available
2020-10-20T09:34:52Z
dc.date.available
2020-10-20T11:54:20Z
dc.date.available
2020-10-27T10:48:11Z
dc.date.issued
2020-10
dc.identifier.issn
1664-042X
dc.identifier.other
10.3389/fphys.2020.566303
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/446823
dc.identifier.doi
10.3929/ethz-b-000446823
dc.description.abstract
A dense network of blood vessels distributes blood to different regions of the brain. To meet the temporarily and spatially varying energy demand resulting from changes in neuronal activity, the vasculature is able to locally up-regulate the blood supply. However, to which extent diameter changes of different vessel types contribute to the up-regulation, as well as the spatial and temporal characteristics of their changes, are currently unknown. Here, we present a new simulation method, which solves an inverse problem to calculate diameter changes of individual blood vessels needed to achieve predefined blood flow distributions in microvascular networks. This allows us to systematically compare the impact of different vessel types in various regulation scenarios. Moreover, the method offers the advantage that it handles the stochastic nature of blood flow originating from tracking the movement of individual red blood cells. Since the inverse problem is formulated for time-averaged pressures and flow rates, a deterministic approach for calculating the diameter changes is used, which allows us to apply the method for large realistic microvascular networks with high-dimensional parameter spaces. Our results obtained in both artificial and realistic microvascular networks reveal that diameter changes at the level of capillaries enable a very localized regulation of blood flow. In scenarios where only larger vessels, i.e., arterioles, are allowed to adapt, the flow increase cannot be confined to a specific activated region and flow changes spread into neighboring regions. Furthermore, relatively small dilations and constrictions of all vessel types can lead to substantial changes of capillary blood flow distributions. This suggests that small scale regulation is necessary to obtain a localized increase in blood flow.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Frontiers Media
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
functional hyperaemia
en_US
dc.subject
vessel diameter changes
en_US
dc.subject
blood flow
en_US
dc.subject
realistic microvascular networks
en_US
dc.subject
inverse simulation model
en_US
dc.subject
parameter inference
en_US
dc.subject
activation
en_US
dc.title
Predicting Vessel Diameter Changes to Up-Regulate Biphasic Blood Flow During Activation in Realistic Microvascular Networks
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2020-10-16
ethz.journal.title
Frontiers in Physiology
ethz.journal.volume
11
en_US
ethz.journal.abbreviated
Front Physiol
ethz.pages.start
566303
en_US
ethz.size
16 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Lausanne
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02628 - Institut für Fluiddynamik / Institute of Fluid Dynamics::03644 - Jenny, Patrick / Jenny, Patrick
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02628 - Institut für Fluiddynamik / Institute of Fluid Dynamics::03644 - Jenny, Patrick / Jenny, Patrick
en_US
ethz.relation.isSupplementedBy
10.3929/ethz-b-000431445
ethz.date.deposited
2020-10-20T09:35:02Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-10-20T11:54:33Z
ethz.rosetta.lastUpdated
2024-02-02T12:22:54Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Predicting%20Vessel%20Diameter%20Changes%20to%20Up-Regulate%20Biphasic%20Blood%20Flow%20During%20Activation%20in%20Realistic%20Microvascular%20Networks&rft.jtitle=Frontiers%20in%20Physiology&rft.date=2020-10&rft.volume=11&rft.spage=566303&rft.issn=1664-042X&rft.au=Epp,%20Robert&Schmid,%20Franca&Weber,%20Bruno&Jenny,%20Patrick&rft.genre=article&rft_id=info:doi/10.3389/fphys.2020.566303&
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

Thumbnail

Publikationstyp

Zur Kurzanzeige