Multi-scale classification for electro-sensing
dc.contributor.author
Baldassari, Lorenzo
dc.contributor.author
Scapin, Andrea
dc.date.accessioned
2020-11-03T07:32:35Z
dc.date.available
2020-10-22T07:06:04Z
dc.date.available
2020-10-23T12:20:00Z
dc.date.available
2020-11-03T07:32:35Z
dc.date.issued
2020-06
dc.identifier.uri
http://hdl.handle.net/20.500.11850/447113
dc.description.abstract
This paper introduces premier and innovative (real-time) multi-scale method for target classification in electro-sensing. The intent is that of mimicking the behavior of the weakly electric fish, which is able to retrieve much more information about the target by approaching it. The method is based on a family of transform-invariant shape descriptors computed from generalized polarization tensors (GPTs) reconstructed at multiple scales. The evidence provided by the different descriptors at each scale is fused using Dempster-Shafer Theory. Numerical simulations show that the recognition algorithm we proposed performs undoubtedly well and yields a robust classification.
en_US
dc.language.iso
en
en_US
dc.publisher
Seminar for Applied Mathematics, ETH Zurich
en_US
dc.subject
Electro-sensing
en_US
dc.subject
weakly electric fish
en_US
dc.subject
classifier combination
en_US
dc.subject
shape classification
en_US
dc.subject
reconstruction
en_US
dc.title
Multi-scale classification for electro-sensing
en_US
dc.type
Report
ethz.journal.title
SAM Research Report
ethz.journal.volume
2020-34
en_US
ethz.size
45 p.
en_US
ethz.grant
Mathematics for bio-inspired imaging
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::09504 - Ammari, Habib / Ammari, Habib
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::09504 - Ammari, Habib / Ammari, Habib
en_US
ethz.identifier.url
https://math.ethz.ch/sam/research/reports.html?id=907
ethz.grant.agreementno
172483
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projekte MINT
ethz.relation.isPreviousVersionOf
handle/20.500.11850/495047
ethz.date.deposited
2020-10-22T07:06:15Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.identifier.internal
https://math.ethz.ch/sam/research/reports.html?id=907
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-10-23T12:20:11Z
ethz.rosetta.lastUpdated
2022-03-29T03:57:02Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Multi-scale%20classification%20for%20electro-sensing&rft.jtitle=SAM%20Research%20Report&rft.date=2020-06&rft.volume=2020-34&rft.au=Baldassari,%20Lorenzo&Scapin,%20Andrea&rft.genre=report&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Report [6870]