Show simple item record

dc.contributor.author
Mishra, Siddhartha
dc.contributor.author
Molinaro, Roberto
dc.date.accessioned
2020-10-22T15:32:17Z
dc.date.available
2020-10-22T08:25:48Z
dc.date.available
2020-10-22T15:32:17Z
dc.date.issued
2020-06
dc.identifier.uri
http://hdl.handle.net/20.500.11850/447151
dc.description.abstract
Physics informed neural networks (PINNs) have recently been very successfully applied for efficiently approximating inverse problems for PDEs. We focus on a particular class of inverse problems, the so-called data assimilation or unique continuation problems, and prove rigorous estimates on the generalization error of PINNs approximating them. An abstract framework is presented and conditional stability estimates for the underlying inverse problem are employed to derive the estimate on the PINN generalization error, providing rigorous justification for the use of PINNs in this context. The abstract framework is illustrated with examples of four prototypical linear PDEs. Numerical experiments, validating the proposed theory, are also presented.
en_US
dc.language.iso
en
en_US
dc.publisher
Seminar for Applied Mathematics, ETH Zurich
en_US
dc.subject
PDE
en_US
dc.subject
Numerical Analysis
en_US
dc.subject
Deep Learning
en_US
dc.subject
Inverse Problem
en_US
dc.title
Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating PDEs II: A class of inverse problems
en_US
dc.type
Report
ethz.journal.title
SAM Research Report
ethz.journal.volume
2020-46
en_US
ethz.size
35 p.
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03851 - Mishra, Siddhartha / Mishra, Siddhartha
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03851 - Mishra, Siddhartha / Mishra, Siddhartha
en_US
ethz.identifier.url
https://math.ethz.ch/sam/research/reports.html?id=919
ethz.date.deposited
2020-10-22T08:25:58Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.identifier.internal
https://math.ethz.ch/sam/research/reports.html?id=919
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-10-22T15:32:28Z
ethz.rosetta.lastUpdated
2021-02-15T19:02:44Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Estimates%20on%20the%20generalization%20error%20of%20Physics%20Informed%20Neural%20Networks%20(PINNs)%20for%20approximating%20PDEs%20II:%20A%20class%20of%20inverse%20pro&rft.jtitle=SAM%20Research%20Report&rft.date=2020-06&rft.volume=2020-46&rft.au=Mishra,%20Siddhartha&Molinaro,%20Roberto&rft.genre=report&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record