Physics Informed Neural Networks for Simulating Radiative Transfer
dc.contributor.author
Mishra, Siddhartha
dc.contributor.author
Molinaro, Roberto
dc.date.accessioned
2020-10-22T13:54:06Z
dc.date.available
2020-10-22T09:16:19Z
dc.date.available
2020-10-22T13:54:06Z
dc.date.issued
2020-09
dc.identifier.uri
http://hdl.handle.net/20.500.11850/447237
dc.description.abstract
We propose a novel machine learning algorithm for simulating radiative transfer. Our algorithmis based on physics informed neural networks (PINNs), which are trained by minimizing the residualof the underlying radiative tranfer equations. We present extensive experiments and theoretical errorestimates to demonstrate that PINNs provide a very easy to implement, fast, robust and accuratemethod for simulating radiative transfer. We also present a PINN based algorithm for simulatinginverse problems for radiative transfer efficiently.
en_US
dc.language.iso
en
en_US
dc.publisher
Seminar for Applied Mathematics, ETH Zurich
en_US
dc.subject
Deep Learning
en_US
dc.subject
Physic Informed
en_US
dc.subject
Neural Networks
en_US
dc.subject
Radiative Transfer
en_US
dc.title
Physics Informed Neural Networks for Simulating Radiative Transfer
en_US
dc.type
Report
ethz.journal.title
SAM Research Report
ethz.journal.volume
2020-62
en_US
ethz.size
25 p.
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03851 - Mishra, Siddhartha / Mishra, Siddhartha
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03851 - Mishra, Siddhartha / Mishra, Siddhartha
en_US
ethz.identifier.url
https://math.ethz.ch/sam/research/reports.html?id=935
ethz.relation.isPartOf
10.3929/ethz-b-000488139
ethz.date.deposited
2020-10-22T09:16:29Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.identifier.internal
https://math.ethz.ch/sam/research/reports.html?id=935
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-10-22T13:54:18Z
ethz.rosetta.lastUpdated
2020-10-22T13:54:18Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Physics%20Informed%20Neural%20Networks%20for%20Simulating%20Radiative%20Transfer&rft.jtitle=SAM%20Research%20Report&rft.date=2020-09&rft.volume=2020-62&rft.au=Mishra,%20Siddhartha&Molinaro,%20Roberto&rft.genre=report&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Report [6979]