Overcoming the curse of dimensionality in the numerical approximation of Allen–Cahn partial differential equations via truncated full-history recursive multilevel Picard approximations
dc.contributor.author
Beck, Christian
dc.contributor.author
Hornung, Fabian
dc.contributor.author
Hutzenthaler, Martin
dc.contributor.author
Jentzen, Arnulf
dc.contributor.author
Kruse, Thomas
dc.date.accessioned
2021-02-11T07:30:30Z
dc.date.available
2020-10-22T12:27:57Z
dc.date.available
2020-10-26T18:41:26Z
dc.date.available
2021-01-08T15:23:29Z
dc.date.available
2021-02-11T07:30:30Z
dc.date.issued
2020-12-16
dc.identifier.issn
1569-3953
dc.identifier.issn
1570-2820
dc.identifier.other
10.1515/jnma-2019-0074
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/447274
dc.description.abstract
One of the most challenging problems in applied mathematics is the approximate solution of nonlinear partial differential equations (PDEs) in high dimensions. Standard deterministic approximation methods like finite differences or finite elements suffer from the curse of dimensionality in the sense that the computational effort grows exponentially in the dimension. In this work we overcome this difficulty in the case of reaction–diffusion type PDEs with a locally Lipschitz continuous coervice nonlinearity (such as Allen–Cahn PDEs) by introducing and analyzing truncated variants of the recently introduced full-history recursive multilevel Picard approximation schemes.
en_US
dc.language.iso
en
en_US
dc.publisher
De Gruyter
en_US
dc.subject
Parabolic partial differential equations
en_US
dc.subject
Multilevel Picard approximations
en_US
dc.subject
Feynman-Kac representation
en_US
dc.subject
Curse of dimensionality
en_US
dc.subject
Numerical analysis
en_US
dc.subject
Applied stochastic analysis
en_US
dc.subject
60H30
en_US
dc.subject
65C05
en_US
dc.subject
65M75
en_US
dc.title
Overcoming the curse of dimensionality in the numerical approximation of Allen–Cahn partial differential equations via truncated full-history recursive multilevel Picard approximations
en_US
dc.type
Journal Article
dc.date.published
2020-06-30
ethz.journal.title
Journal of Numerical Mathematics
ethz.journal.volume
28
en_US
ethz.journal.issue
4
en_US
ethz.pages.start
197
en_US
ethz.pages.end
222
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.identifier.nebis
ethz.publication.place
Berlin
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02003 - Mathematik Selbständige Professuren::03874 - Hungerbühler, Norbert / Hungerbühler, Norbert
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02003 - Mathematik Selbständige Professuren::03874 - Hungerbühler, Norbert / Hungerbühler, Norbert
ethz.relation.isNewVersionOf
handle/20.500.11850/364423
ethz.date.deposited
2020-10-22T12:28:10Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-01-08T15:23:45Z
ethz.rosetta.lastUpdated
2024-02-02T13:04:48Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Overcoming%20the%20curse%20of%20dimensionality%20in%20the%20numerical%20approximation%20of%20Allen%E2%80%93Cahn%20partial%20differential%20equations%20via%20truncated%20&rft.jtitle=Journal%20of%20Numerical%20Mathematics&rft.date=2020-12-16&rft.volume=28&rft.issue=4&rft.spage=197&rft.epage=222&rft.issn=1569-3953&1570-2820&rft.au=Beck,%20Christian&Hornung,%20Fabian&Hutzenthaler,%20Martin&Jentzen,%20Arnulf&Kruse,%20Thomas&rft.genre=article&rft_id=info:doi/10.1515/jnma-2019-0074&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Journal Article [132361]