Learning quadrupedal locomotion over challenging terrain
dc.contributor.author
Lee, Joonho
dc.contributor.author
Hwangbo, Jemin
dc.contributor.author
Wellhausen, Lorenz
dc.contributor.author
Koltun, Vladlen
dc.contributor.author
Hutter, Marco
dc.date.accessioned
2020-10-28T12:29:54Z
dc.date.available
2020-10-28T11:48:48Z
dc.date.available
2020-10-28T12:29:54Z
dc.date.issued
2020-10-28
dc.identifier.issn
2470-9476
dc.identifier.other
10.1126/scirobotics.abc5986
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/448343
dc.identifier.doi
10.3929/ethz-b-000448343
dc.description.abstract
Legged locomotion can extend the operational domain of robots to some of the most challenging environments on Earth. However, conventional controllers for legged locomotion are based on elaborate state machines that explicitly trigger the execution of motion primitives and reflexes. These designs have increased in complexity but fallen short of the generality and robustness of animal locomotion. Here, we present a robust controller for blind quadrupedal locomotion in challenging natural environments. Our approach incorporates proprioceptive feedback in locomotion control and demonstrates zero-shot generalization from simulation to natural environments. The controller is trained by reinforcement learning in simulation. The controller is driven by a neural network policy that acts on a stream of proprioceptive signals. The controller retains its robustness under conditions that were never encountered during training: deformable terrains such as mud and snow, dynamic footholds such as rubble, and overground impediments such as thick vegetation and gushing water. The presented work indicates that robust locomotion in natural environments can be achieved by training in simple domains.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
AAAS
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
Learning quadrupedal locomotion over challenging terrain
en_US
dc.type
Journal Article
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2020-10-21
ethz.journal.title
Science Robotics
ethz.journal.volume
5
en_US
ethz.journal.issue
47
en_US
ethz.pages.start
eabc5986
en_US
ethz.size
14 p.; 22 p. (accepted version)
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.grant
Learning Mobility for Real Legged Robots
en_US
ethz.grant
subTerranean Haptic INvestiGator
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Washington, DC
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::09570 - Hutter, Marco / Hutter, Marco
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::09570 - Hutter, Marco / Hutter, Marco
en_US
ethz.grant.agreementno
852044
ethz.grant.agreementno
780883
ethz.grant.fundername
EC
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.program
H2020
ethz.grant.program
H2020
ethz.date.deposited
2020-10-28T11:49:04Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-10-28T12:30:06Z
ethz.rosetta.lastUpdated
2024-02-02T12:23:04Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Learning%20quadrupedal%20locomotion%20over%20challenging%20terrain&rft.jtitle=Science%20Robotics&rft.date=2020-10-28&rft.volume=5&rft.issue=47&rft.spage=eabc5986&rft.issn=2470-9476&rft.au=Lee,%20Joonho&Hwangbo,%20Jemin&Wellhausen,%20Lorenz&Koltun,%20Vladlen&Hutter,%20Marco&rft.genre=article&rft_id=info:doi/10.1126/scirobotics.abc5986&
Files in this item
Publication type
-
Journal Article [132218]