Show simple item record

dc.contributor.author
Parés, Carlos
dc.contributor.author
Parés-Pulido, Carlos
dc.date.accessioned
2020-10-30T09:01:18Z
dc.date.available
2020-10-30T03:58:05Z
dc.date.available
2020-10-30T09:01:18Z
dc.date.issued
2021-01-15
dc.identifier.issn
0021-9991
dc.identifier.issn
1090-2716
dc.identifier.other
10.1016/j.jcp.2020.109880
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/448699
dc.description.abstract
In this paper, high order well-balanced finite difference weighted essentially non-oscillatory methods to solve general systems of balance laws are presented. Two different families are introduced: while the methods in the first one preserve every stationary solution, those in the second family only preserve a given set of stationary solutions that depend on some parameters. The accuracy, well-balancedness, and conservation properties of the methods are discussed, as well as their application to systems with singular source terms. The strategy is applied to derive third and fifth order well-balanced methods for a linear scalar balance law, Burgers' equation with a nonlinear source term, and for the shallow water model. In particular, numerical methods that preserve every stationary solution or only water at rest equilibria are derived for the latter.(© 2020 Elsevier Inc.)
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.subject
Systems of balance laws
en_US
dc.subject
High-order methods
en_US
dc.subject
Well-balanced methods
en_US
dc.subject
Finite difference methods
en_US
dc.subject
Weighted essentially non-oscillatory methods
en_US
dc.subject
Shallow Water model
en_US
dc.title
Well-balanced high-order finite difference methods for systems of balance laws
en_US
dc.type
Journal Article
dc.date.published
2020-10-01
ethz.journal.title
Journal of Computational Physics
ethz.journal.volume
425
en_US
ethz.journal.abbreviated
J. comput. phys.
ethz.pages.start
109880
en_US
ethz.size
35 p.
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Amsterdam
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2020-10-30T03:58:12Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-10-30T09:01:29Z
ethz.rosetta.lastUpdated
2022-03-29T03:51:33Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Well-balanced%20high-order%20finite%20difference%20methods%20for%20systems%20of%20balance%20laws&rft.jtitle=Journal%20of%20Computational%20Physics&rft.date=2021-01-15&rft.volume=425&rft.spage=109880&rft.issn=0021-9991&1090-2716&rft.au=Par%C3%A9s,%20Carlos&Par%C3%A9s-Pulido,%20Carlos&rft.genre=article&rft_id=info:doi/10.1016/j.jcp.2020.109880&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record