Show simple item record

dc.contributor.author
Roos, Philipp
dc.contributor.author
Haselbacher, Andreas
dc.date.accessioned
2020-12-18T12:05:51Z
dc.date.available
2020-10-30T03:58:18Z
dc.date.available
2020-10-30T08:23:16Z
dc.date.available
2020-12-18T12:05:51Z
dc.date.issued
2021-01-01
dc.identifier.issn
0306-2619
dc.identifier.issn
1872-9118
dc.identifier.other
10.1016/j.apenergy.2020.115971
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/448702
dc.identifier.doi
10.3929/ethz-b-000448702
dc.description.abstract
Thermal-energy storage systems consisting of multiple tanks allow the implementation of thermocline-control methods, which can reduce the drop in the outflow temperature during discharging and increase the volumetric storage density and utilization factor. Multi-tank systems based on the extraction and mixing thermocline-control methods were assessed using simulations assuming fluvial rocks as storage material and compressed air as heat-transfer fluid. For adiabatic conditions, the simulations showed improved performance for all multi-tank systems, with diminishing improvements as the number of tanks increases. The mixing method performed better than the extraction method. The mixing method delivered an outflow temperature drop of 5.1% using two tanks whose total volume was 2.15 times smaller than that of the single-tank system. For diabatic conditions, more than three tanks were not beneficial. With two tanks, the mixing method attained a temperature drop of 5.8% with a volume that is 2.5 times smaller than that of the single-tank system. The exergy efficiency of the two-tank system was 91.3% compared to 98.1% of the single-tank system. The specific material costs of the two-tank system were 1.5 times lower than those of the single-tank system.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Thermal-energy storage
en_US
dc.subject
Thermocline storage
en_US
dc.subject
Thermocline control
en_US
dc.subject
Multi-tank storage
en_US
dc.subject
Compressed air energy storage
en_US
dc.subject
Simulation
en_US
dc.title
Thermocline control through multi-tank thermal-energy storage systems
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2020-10-22
ethz.journal.title
Applied Energy
ethz.journal.volume
281
en_US
ethz.journal.abbreviated
Appl. Energy
ethz.pages.start
115971
en_US
ethz.size
13 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Amsterdam
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02668 - Inst. f. Energie- und Verfahrenstechnik / Inst. Energy and Process Engineering::03530 - Steinfeld, Aldo / Steinfeld, Aldo
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02668 - Inst. f. Energie- und Verfahrenstechnik / Inst. Energy and Process Engineering::03530 - Steinfeld, Aldo / Steinfeld, Aldo
en_US
ethz.date.deposited
2020-10-30T03:58:18Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-10-30T08:23:36Z
ethz.rosetta.lastUpdated
2022-03-29T04:37:05Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Thermocline%20control%20through%20multi-tank%20thermal-energy%20storage%20systems&rft.jtitle=Applied%20Energy&rft.date=2021-01-01&rft.volume=281&rft.spage=115971&rft.issn=0306-2619&1872-9118&rft.au=Roos,%20Philipp&Haselbacher,%20Andreas&rft.genre=article&rft_id=info:doi/10.1016/j.apenergy.2020.115971&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record