Zur Kurzanzeige

dc.contributor.author
Flamm, Benjamin
dc.contributor.author
Peter, Christian
dc.contributor.author
Büchi, Felix N.
dc.contributor.author
Lygeros, John
dc.date.accessioned
2020-10-30T08:11:36Z
dc.date.available
2020-10-30T03:58:22Z
dc.date.available
2020-10-30T08:11:36Z
dc.date.issued
2021-01-01
dc.identifier.issn
0306-2619
dc.identifier.issn
1872-9118
dc.identifier.other
10.1016/j.apenergy.2020.116031
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/448703
dc.identifier.doi
10.3929/ethz-b-000448703
dc.description.abstract
We present a method that operates an electrolyzer to meet the demand of a hydrogen refueling station in a cost-effective manner by solving a model-based optimal control problem. To formulate the underlying problem, we first conduct an experimental characterization of a Siemens SILYZER 100 polymer electrolyte membrane electrolyzer with 100 kW of rated power. We run experiments to determine the electrolyzer’s conversion efficiency and thermal dynamics as well as the overload-limiting algorithm used in the electrolyzer. The resulting detailed nonlinear models are used to design a real-time optimal controller, which is then implemented on the actual system. Each minute, the controller solves a deterministic, receding-horizon problem which seeks to minimize the cost of satisfying a given hydrogen demand, while using a storage tank to take advantage of time-varying electricity prices and photovoltaic inflow. We illustrate in simulation the significant cost reduction achieved by our method compared to others in the literature, and then validate our method by demonstrating it in real-time operation on the actual system.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
Energy Storage Operation
en_US
dc.subject
PEM electrolyzer
en_US
dc.subject
Power to gas
en_US
dc.subject
Model predictive control
en_US
dc.title
Electrolyzer modeling and real-time control for optimized production of hydrogen gas
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
dc.date.published
2020-10-22
ethz.journal.title
Applied Energy
ethz.journal.volume
281
en_US
ethz.journal.abbreviated
Appl. Energy
ethz.pages.start
116031
en_US
ethz.size
11 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Amsterdam
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02650 - Institut für Automatik / Automatic Control Laboratory::03751 - Lygeros, John / Lygeros, John
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02650 - Institut für Automatik / Automatic Control Laboratory::03751 - Lygeros, John / Lygeros, John
ethz.date.deposited
2020-10-30T03:58:28Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-10-30T08:11:45Z
ethz.rosetta.lastUpdated
2021-02-15T19:29:06Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Electrolyzer%20modeling%20and%20real-time%20control%20for%20optimized%20production%20of%20hydrogen%20gas&rft.jtitle=Applied%20Energy&rft.date=2021-01-01&rft.volume=281&rft.spage=116031&rft.issn=0306-2619&1872-9118&rft.au=Flamm,%20Benjamin&Peter,%20Christian&B%C3%BCchi,%20Felix%20N.&Lygeros,%20John&rft.genre=article&rft_id=info:doi/10.1016/j.apenergy.2020.116031&
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

Thumbnail

Publikationstyp

Zur Kurzanzeige