Show simple item record

dc.contributor.author
Cappelletti, Daniele
dc.contributor.author
Gupta, Ankit
dc.contributor.author
Khammash, Mustafa Hani
dc.date.accessioned
2022-07-19T13:57:43Z
dc.date.available
2020-11-08T04:01:36Z
dc.date.available
2020-11-11T14:42:58Z
dc.date.available
2022-07-19T13:57:43Z
dc.date.issued
2020-10
dc.identifier.issn
1742-5689
dc.identifier.issn
1742-5662
dc.identifier.other
10.1098/rsif.2020.0437
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/450175
dc.description.abstract
Biochemical systems that express certain chemical species of interest at the same level at any positive steady state are called ‘absolute concentration robust’ (ACR). These species behave in a stable, predictable way, in the sense that their expression is robust with respect to sudden changes in the species concentration, provided that the system reaches a (potentially new) positive steady state. Such a property has been proven to be of importance in certain gene regulatory networks and signaling systems. In the present paper, we mathematically prove that a well-known class of ACR systems studied by Shinar and Feinberg in 2010 hides an internal integral structure. This structure confers these systems with a higher degree of robustness than was previously known. In particular, disturbances much more general than sudden changes in the species concentrations can be rejected, and robust perfect adaptation is achieved. Significantly, we show that these properties are maintained when the system is interconnected with other chemical reaction networks. This key feature enables the design of insulator devices that are able to buffer the loading effect from downstream systems—a crucial requirement for modular circuit design in synthetic biology. We further note that while the best performance of the insulators are achieved when these act at a faster timescale than the upstream module (as typically required), it is not necessary for them to act on a faster timescale than the downstream module in our construction.
en_US
dc.language.iso
en
en_US
dc.publisher
Royal Society
en_US
dc.subject
integral feedback
en_US
dc.subject
reaction networks
en_US
dc.subject
absolute concentration robustness
en_US
dc.subject
insulators
en_US
dc.title
A hidden integral structure endows absolute concentration robust systems with resilience to dynamical concentration disturbances
en_US
dc.type
Journal Article
dc.date.published
2020-10-28
ethz.journal.title
Journal of the Royal Society. Interface
ethz.journal.volume
17
en_US
ethz.journal.issue
171
en_US
ethz.journal.abbreviated
J. R. Soc. Interface
ethz.pages.start
20200437
en_US
ethz.size
12 p.
en_US
ethz.grant
Theory and Design tools for bio-molecular control systems
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
London
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02060 - Dep. Biosysteme / Dep. of Biosystems Science and Eng.::03921 - Khammash, Mustafa / Khammash, Mustafa
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02060 - Dep. Biosysteme / Dep. of Biosystems Science and Eng.::03921 - Khammash, Mustafa / Khammash, Mustafa
ethz.grant.agreementno
743269
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.program
H2020
ethz.date.deposited
2020-11-08T04:01:46Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-11-11T14:43:12Z
ethz.rosetta.lastUpdated
2024-02-02T17:40:56Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=A%20hidden%20integral%20structure%20endows%20absolute%20concentration%20robust%20systems%20with%20resilience%20to%20dynamical%20concentration%20disturbances&rft.jtitle=Journal%20of%20the%20Royal%20Society.%20Interface&rft.date=2020-10&rft.volume=17&rft.issue=171&rft.spage=20200437&rft.issn=1742-5689&1742-5662&rft.au=Cappelletti,%20Daniele&Gupta,%20Ankit&Khammash,%20Mustafa%20Hani&rft.genre=article&rft_id=info:doi/10.1098/rsif.2020.0437&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record