Show simple item record

dc.contributor.author
Oblak, Blagoje
dc.contributor.author
Kozyreff, Gregory
dc.date.accessioned
2020-11-19T17:45:45Z
dc.date.available
2020-11-17T03:51:24Z
dc.date.available
2020-11-19T17:45:45Z
dc.date.issued
2020-11
dc.identifier.issn
1054-1500
dc.identifier.issn
1089-7682
dc.identifier.other
10.1063/5.0021892
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/451621
dc.description.abstract
We consider the KdV equation on a circle and its Lie–Poisson reconstruction, which is reminiscent of an equation of motion for fluid particles. For periodic waves, the stroboscopic reconstructed motion is governed by an iterated map whose Poincaré rotation number yields the drift velocity. We show that this number has a geometric origin: it is the sum of a dynamical phase, a Berry phase, and an “anomalous phase.” The last two quantities are universal: they are solely due to the underlying Virasoro group structure. The Berry phase, in particular, was previously described by Oblak [J. High Energy Phys. 10, 114 (2017)] for two-dimensional conformal field theories and follows from adiabatic deformations produced by the propagating wave. We illustrate these general results with cnoidal waves, for which all phases can be evaluated in closed form thanks to a uniformizing map that we derive. Along the way, we encounter “orbital bifurcations” occurring when a wave becomes non-uniformizable: there exists a resonance wedge, in the cnoidal parameter space, where particle motion is locked to the wave, while no such locking occurs outside of the wedge.
en_US
dc.language.iso
en
en_US
dc.publisher
AIP Publishing
en_US
dc.title
Berry phases in the reconstructed KdV equation
en_US
dc.type
Journal Article
dc.date.published
2020-11-05
ethz.journal.title
Chaos
ethz.journal.volume
30
en_US
ethz.journal.issue
11
en_US
ethz.journal.abbreviated
Chaos
ethz.pages.start
113114
en_US
ethz.size
24 p.
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Melville, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02511 - Institut für Theoretische Physik / Institute for Theoretical Physics::03657 - Gaberdiel, Matthias / Gaberdiel, Matthias
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02511 - Institut für Theoretische Physik / Institute for Theoretical Physics::03657 - Gaberdiel, Matthias / Gaberdiel, Matthias
ethz.date.deposited
2020-11-17T03:51:29Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-11-19T17:46:11Z
ethz.rosetta.lastUpdated
2021-02-15T20:51:02Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Berry%20phases%20in%20the%20reconstructed%20KdV%20equation&rft.jtitle=Chaos&rft.date=2020-11&rft.volume=30&rft.issue=11&rft.spage=113114&rft.issn=1054-1500&1089-7682&rft.au=Oblak,%20Blagoje&Kozyreff,%20Gregory&rft.genre=article&rft_id=info:doi/10.1063/5.0021892&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record