Optimal lower bound on the least singular value of the shifted Ginibre ensemble
Metadata only
Date
2020-02Type
- Journal Article
ETH Bibliography
yes
Altmetrics
Abstract
We consider the least singular value of a large random matrix with real or complex i.i.d. Gaussian entries shifted by a constant z∈C. We prove an optimal lower tail estimate on this singular value in the critical regime where z is around the spectral edge, thus improving the classical bound of Sankar, Spielman and Teng (SIAM J. Matrix Anal. Appl. 28:2 (2006), 446–476) for the particular shift-perturbation in the edge regime. Lacking Brézin–Hikami formulas in the real case, we rely on the superbosonization formula (Comm. Math. Phys. 283:2 (2008), 343–395). Show more
Publication status
publishedExternal links
Journal / series
Probability and Mathematical PhysicsVolume
Pages / Article No.
Publisher
Mathematical Sciences PublishersSubject
supersymmetric formalism; superbosonization; circular lawOrganisational unit
02889 - ETH Institut für Theoretische Studien / ETH Institute for Theoretical Studies
More
Show all metadata
ETH Bibliography
yes
Altmetrics