Show simple item record

dc.contributor.author
Thomas Arrigo, Laurel K.
dc.contributor.author
Bouchet, Sylvain
dc.contributor.author
Kaegi, Ralf
dc.contributor.author
Kretzschmar, Ruben
dc.date.accessioned
2021-04-01T14:37:36Z
dc.date.available
2020-11-26T04:46:18Z
dc.date.available
2020-11-26T09:20:39Z
dc.date.available
2021-04-01T14:37:36Z
dc.date.issued
2020-11-01
dc.identifier.issn
2051-8161
dc.identifier.issn
2051-8153
dc.identifier.other
10.1039/d0en00398k
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/453119
dc.identifier.doi
10.3929/ethz-b-000453119
dc.description.abstract
In redox-dynamic environments, sorption to poorly-crystalline, nanometer-sized Fe(III)-(oxyhydr)oxides like ferrihydrite influences the biogeochemical cycling of nutrients and trace elements. Under sulfate-reducing conditions, the reductive dissolution of ferrihydrite leads to the release of associated constituents, which may be re-immobilized via sorption to secondary Fe minerals. To date, studies following the kinetics and transformation pathways of Fe(III)-(oxyhydr)oxides upon exposure to dissolved sulfide (S(−II)) have largely focused on pure Fe minerals. However, in nature, Fe(III)-(oxyhydr)oxides are often found in association with organic matter (OM). Because ferrihydrite–OM associations exhibit characteristics and biogeochemical reactivity differing from those of pure ferrihydrite, in this study, we compared sulfidization kinetics and transformation pathways of a pure ferrihydrite to those of ferrihydrite coprecipitated with contrasting organic ligands; polygalacturonic acid, galacturonic acid, and citric acid (C/Fe molar ratio ∼0.55). Incorporating aqueous- and solid-phase S and Fe speciation analyses (via wet chemistry techniques and S and Fe X-ray absorption spectroscopy) in addition to X-ray diffraction and electron microscopy, we studied both rapid (<7 days) and long-term (12 months) mineral transformations as well as the impact of varying S(−II)/Fe molar ratios at neutral pH. Our results showed that at low S(−II)/Fe molar ratios (=0.1), poorly-crystalline Fe sulfide minerals (e.g. mackinawite) did not form in any (co)precipitate. In contrast, at higher S(−II)/Fe molar ratios (=0.5), mackinawite rapidly precipitated, with higher contributions detected in the coprecipitates than in the pure ferrihydrite. Aging of the samples led to further mineral transformations, including divergent pyrite and greigite precipitation, and an overall increase in the crystallinity of secondary mineral phases. Still, the fraction of residual ferrihydrite at 12 months was higher in the OM-containing coprecipitates, with the most ferrihydrite preservation observed in coprecipitates comprising carboxyl-poor ligands (galacturonic acid and citric acid). This suggests that the presence of OM inhibited S(−II)-induced ferrihydrite mineral transformations and that the composition of the associated OM influenced mineral transformation pathways. Collectively, these results suggest that further studies regarding sulfidization pathways should include OM in order to better represent environmental conditions.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Royal Society of Chemistry
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/3.0/
dc.title
Organic matter influences transformation products of ferrihydrite exposed to sulfide
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 3.0 Unported
dc.date.published
2020-10-09
ethz.journal.title
Environmental Science: Nano
ethz.journal.volume
7
en_US
ethz.journal.issue
11
en_US
ethz.journal.abbreviated
Environ. Sci., Nano
ethz.pages.start
3405
en_US
ethz.pages.end
3418
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
Iron mineral dynamics in redox-affected soils and sediments: Pushing the frontier toward in-situ studies
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Cambridge
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02721 - Inst. f. Biogeochemie u. Schadstoffdyn. / Inst. Biogeochem. and Pollutant Dynamics::03541 - Kretzschmar, Ruben / Kretzschmar, Ruben
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02721 - Inst. f. Biogeochemie u. Schadstoffdyn. / Inst. Biogeochem. and Pollutant Dynamics::03541 - Kretzschmar, Ruben / Kretzschmar, Ruben
ethz.grant.agreementno
788009
ethz.grant.agreementno
788009
ethz.grant.fundername
EC
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.program
H2020
ethz.grant.program
H2020
ethz.date.deposited
2020-11-26T04:46:28Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-11-26T09:20:51Z
ethz.rosetta.lastUpdated
2024-02-02T13:27:37Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.atitle=Organic%20matter%20influences%20transformation%20products%20of%20ferrihydrite%20exposed%20to%20sulfide&amp;rft.jtitle=Environmental%20Science:%20Nano&amp;rft.date=2020-11-01&amp;rft.volume=7&amp;rft.issue=11&amp;rft.spage=3405&amp;rft.epage=3418&amp;rft.issn=2051-8161&amp;2051-8153&amp;rft.au=Thomas%20Arrigo,%20Laurel%20K.&amp;Bouchet,%20Sylvain&amp;Kaegi,%20Ralf&amp;Kretzschmar,%20Ruben&amp;rft.genre=article&amp;rft_id=info:doi/10.1039/d0en00398k&amp;
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record