Safe Contextual Bayesian Optimization for Sustainable Room Temperature PID Control Tuning
dc.contributor.author
Fiducioso, Marcello
dc.contributor.author
Curi, Sebastian
dc.contributor.author
Schumacher, Benedikt
dc.contributor.author
Gwerder, Markus
dc.contributor.author
Krause, Andreas
dc.contributor.editor
Kraus, Sarit
dc.date.accessioned
2020-12-01T12:29:25Z
dc.date.available
2020-11-28T10:32:21Z
dc.date.available
2020-12-01T12:29:25Z
dc.date.issued
2019
dc.identifier.isbn
978-0-9992411-4-1
en_US
dc.identifier.other
10.24963/ijcai.2019/811
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/453620
dc.description.abstract
We tune one of the most common heating, ventilation, and air conditioning (HVAC) control loops, namely the temperature control of a room. For economical and environmental reasons, it is of prime importance to optimize the performance of this system. Buildings account from 20 to 40 % of a country energy consumption, and almost 50 % of it comes from HVAC systems. Scenario projections predict a 30 % decrease in heating consumption by 2050 due to efficiency increase. Advanced control techniques can improve performance; however, the proportional-integral-derivative (PID) control is typically used due to its simplicity and overall performance. We use Safe Contextual Bayesian Optimization to optimize the PID parameters without human intervention. We reduce costs by 32 % compared to the current PID controller setting while assuring safety and comfort to people in the room. The results of this work have an immediate impact on the room control loop performances and its related commissioning costs. Furthermore, this successful attempt paves the way for further use at different levels of HVAC systems, with promising energy, operational, and commissioning costs savings, and it is a practical demonstration of the positive effects that Artificial Intelligence can have on environmental sustainability. © 2019 International Joint Conferences on Artificial Intelligence.
en_US
dc.language.iso
en
en_US
dc.publisher
International Joint Conferences on Artificial Intelligence
en_US
dc.title
Safe Contextual Bayesian Optimization for Sustainable Room Temperature PID Control Tuning
en_US
dc.type
Conference Paper
ethz.book.title
Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence
en_US
ethz.pages.start
5850
en_US
ethz.pages.end
5856
en_US
ethz.event
International Joint Conferences on Artificial Intelligence (IJCAI 2019)
en_US
ethz.event.location
Macao, China
en_US
ethz.event.date
August 10-16, 2019
en_US
ethz.publication.place
S.l.
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::03908 - Krause, Andreas / Krause, Andreas
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::03908 - Krause, Andreas / Krause, Andreas
en_US
ethz.date.deposited
2020-11-28T10:32:30Z
ethz.source
BATCH
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-12-01T12:29:37Z
ethz.rosetta.lastUpdated
2021-02-15T21:22:17Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Safe%20Contextual%20Bayesian%20Optimization%20for%20Sustainable%20Room%20Temperature%20PID%20Control%20Tuning&rft.date=2019&rft.spage=5850&rft.epage=5856&rft.au=Fiducioso,%20Marcello&Curi,%20Sebastian&Schumacher,%20Benedikt&Gwerder,%20Markus&Krause,%20Andreas&rft.isbn=978-0-9992411-4-1&rft.genre=proceeding&rft_id=info:doi/10.24963/ijcai.2019/811&rft.btitle=Proceedings%20of%20the%20Twenty-Eighth%20International%20Joint%20Conference%20on%20Artificial%20Intelligence
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [33998]