Zur Kurzanzeige

dc.contributor.author
Arqué, Xavier
dc.contributor.author
Andrés, Xavier
dc.contributor.author
Mestre, Rafael
dc.contributor.author
Ciraulo, Bernard
dc.contributor.author
Ortega Arroyo, Jaime
dc.contributor.author
Quidant, Romain
dc.contributor.author
Patiño, Tania
dc.contributor.author
Sánchez, Samuel
dc.date.accessioned
2020-12-02T12:33:24Z
dc.date.available
2020-12-01T08:06:01Z
dc.date.available
2020-12-02T12:33:24Z
dc.date.issued
2020-07-27
dc.identifier.other
10.34133/2020/2424972
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/453858
dc.identifier.doi
10.3929/ethz-b-000453858
dc.description.abstract
Enzyme-powered motors self-propel through the catalysis of in situ bioavailable fuels, which makes them excellent candidates for biomedical applications. However, fundamental issues like their motion in biological fluids and the understanding of the propulsion mechanism are critical aspects to be tackled before a future application in biomedicine. Herein, we investigated the physicochemical effects of ionic species on the self-propulsion of urease-powered micromotors. Results showed that the presence of PBS, NaOH, NaCl, and HEPES reduced self-propulsion of urease-powered micromotors pointing towards ion-dependent mechanisms of motion. We studied the 3D motion of urease micromotors using digital holographic microscopy to rule out any motor-surface interaction as the cause of motion decay when salts are present in the media. In order to protect and minimize the negative effect of ionic species on micromotors’ performance, we coated the motors with methoxypolyethylene glycol amine (mPEG) showing higher speed compared to noncoated motors at intermediate ionic concentrations. These results provide new insights into the mechanism of urease-powered micromotors, study the effect of ionic media, and contribute with potential solutions to mitigate the reduction of mobility of enzyme-powered micromotors.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
AAAS
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Bionanophotonics
en_US
dc.title
Ionic Species Affect the Self-Propulsion of Urease-Powered Micromotors
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
Research
ethz.journal.volume
2020
en_US
ethz.journal.abbreviated
Res. Weizmann Inst. Sci.
ethz.pages.start
2424972
en_US
ethz.size
14 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.publication.place
Washington, DC
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02668 - Inst. f. Energie- und Verfahrenstechnik / Inst. Energy and Process Engineering::09698 - Quidant, Romain / Quidant, Romain
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02668 - Inst. f. Energie- und Verfahrenstechnik / Inst. Energy and Process Engineering::09698 - Quidant, Romain / Quidant, Romain
en_US
ethz.tag
nanobio
en_US
ethz.tag
imaging
en_US
ethz.date.deposited
2020-12-01T08:06:11Z
ethz.source
FORM
ethz.eth
no
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-12-02T12:33:36Z
ethz.rosetta.lastUpdated
2024-02-02T12:37:03Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Ionic%20Species%20Affect%20the%20Self-Propulsion%20of%20Urease-Powered%20Micromotors&rft.jtitle=Research&rft.date=2020-07-27&rft.volume=2020&rft.spage=2424972&rft.au=Arqu%C3%A9,%20Xavier&Andr%C3%A9s,%20Xavier&Mestre,%20Rafael&Ciraulo,%20Bernard&Ortega%20Arroyo,%20Jaime&rft.genre=article&rft_id=info:doi/10.34133/2020/2424972&
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

Thumbnail

Publikationstyp

Zur Kurzanzeige