
Embargoed until 2021-11-11
Date
2020Type
- Conference Paper
ETH Bibliography
yes
Altmetrics
Abstract
Many object pose estimation algorithms rely on the analysis-by-synthesis framework which requires explicit representations of individual object instances. In this paper we combine a gradient-based fitting procedure with a parametric neural image synthesis module that is capable of implicitly representing the appearance, shape and pose of entire object categories, thus rendering the need for explicit CAD models per object instance unnecessary. The image synthesis network is designed to efficiently span the pose configuration space so that model capacity can be used to capture the shape and local appearance (i.e., texture) variations jointly. At inference time the synthesized images are compared to the target via an appearance based loss and the error signal is backpropagated through the network to the input parameters. Keeping the network parameters fixed, this allows for iterative optimization of the object pose, shape and appearance in a joint manner and we experimentally show that the method can recover orientation of objects with high accuracy from 2D images alone. When provided with depth measurements, to overcome scale ambiguities, the method can accurately recover the full 6DOF pose successfully. Show more
Permanent link
https://doi.org/10.3929/ethz-b-000454771Publication status
publishedExternal links
Book title
Computer Vision – ECCV 2020 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVIJournal / series
Lecture Notes in Computer ScienceVolume
Pages / Article No.
Publisher
SpringerEvent
Subject
Category-level object pose; 6DoF pose estimationOrganisational unit
03979 - Hilliges, Otmar / Hilliges, Otmar
Notes
Due to the Coronavirus (COVID-19) the conference was conducted virtually.More
Show all metadata
ETH Bibliography
yes
Altmetrics