Show simple item record

dc.contributor.author
Lan, Andrew S.
dc.contributor.author
Studer, Christoph
dc.contributor.author
Baraniuk, Richard G.
dc.date.accessioned
2020-12-11T11:58:41Z
dc.date.available
2020-12-08T13:26:16Z
dc.date.available
2020-12-11T11:58:41Z
dc.date.issued
2014
dc.identifier.isbn
978-1-4799-2893-4
en_US
dc.identifier.other
10.1109/ICASSP.2014.6854548
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/455325.1
dc.identifier.uri
http://hdl.handle.net/20.500.11850/455325
dc.identifier.doi
10.3929/ethz-b-000455325
dc.description.abstract
This paper deals with the recovery of an unknown, low-rank matrix from quantized and (possibly) corrupted measurements of a subset of its entries. We develop statistical models and corresponding (multi-)convex optimization algorithms for quantized matrix completion (Q-MC) and quantized robust principal component analysis (Q-RPCA). In order to take into account the quantized nature of the available data, we jointly learn the underlying quantization bin boundaries and recover the low-rank matrix, while removing potential (sparse) corruptions. Experimental results on synthetic and two real-world collaborative filtering datasets demonstrate that directly operating with the quantized measurements - rather than treating them as real values - results in (often significantly) lower recovery error if the number of quantization bins is less than about 10.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Quantization
en_US
dc.subject
Convex optimization
en_US
dc.subject
Matrix completion
en_US
dc.subject
Robust principal component analysis
en_US
dc.title
Matrix Recovery from Quantized and Corrupted Measurements
en_US
dc.type
Conference Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2014-07-14
ethz.book.title
2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
en_US
ethz.pages.start
4973
en_US
ethz.pages.end
4977
en_US
ethz.size
5 p.
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.event
39th International Conference on Acoustics, Speech and Signal Processing (ICASSP 2014)
en_US
ethz.event.location
Florence, Italy
en_US
ethz.event.date
May 4-9, 2014
en_US
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02636 - Institut für Integrierte Systeme / Integrated Systems Laboratory::09695 - Studer, Christoph / Studer, Christoph
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02636 - Institut für Integrierte Systeme / Integrated Systems Laboratory::09695 - Studer, Christoph / Studer, Christoph
en_US
ethz.date.deposited
2020-12-08T13:26:30Z
ethz.source
FORM
ethz.eth
no
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-02-15T22:09:52Z
ethz.rosetta.lastUpdated
2021-02-15T22:09:52Z
ethz.rosetta.versionExported
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Matrix%20Recovery%20from%20Quantized%20and%20Corrupted%20Measurements&rft.date=2014&rft.spage=4973&rft.epage=4977&rft.au=Lan,%20Andrew%20S.&Studer,%20Christoph&Baraniuk,%20Richard%20G.&rft.isbn=978-1-4799-2893-4&rft.genre=proceeding&rft_id=info:doi/10.1109/ICASSP.2014.6854548&rft.btitle=2014%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record