
Open access
Datum
2016Typ
- Conference Paper
ETH Bibliographie
no
Altmetrics
Abstract
We investigate the performance of mismatched data detection in large multiple-input multiple-output (MIMO) systems, where the prior distribution of the transmit signal used in the data detector differs from the true prior. To minimize the performance loss caused by this prior mismatch, we include a tuning stage into our recently-proposed large MIMO approximate message passing (LAMA) algorithm, which allows us to develop mismatched LAMA algorithms with optimal as well as sub-optimal tuning. We show that carefully-selected priors often enable simpler and computationally more efficient algorithms compared to LAMA with the true prior while achieving near-optimal performance. A performance analysis of our algorithms for a Gaussian prior and a uniform prior within a hypercube covering the QAM constellation recovers classical and recent results on linear and non-linear MIMO data detection, respectively. Mehr anzeigen
Persistenter Link
https://doi.org/10.3929/ethz-b-000455411Publikationsstatus
publishedExterne Links
Buchtitel
2016 IEEE International Symposium on Information Theory (ISIT)Seiten / Artikelnummer
Verlag
IEEEKonferenz
Organisationseinheit
09695 - Studer, Christoph / Studer, Christoph
ETH Bibliographie
no
Altmetrics