Numerical Simulations for Full History Recursive Multilevel Picard Approximations for Systems of High-Dimensional Partial Differential Equations
dc.contributor.author
Becker, Sebastian
dc.contributor.author
Braunwarth, Ramon
dc.contributor.author
Hutzenthaler, Martin
dc.contributor.author
Jentzen, Arnulf
dc.contributor.author
von Wurstemberger, Philippe
dc.date.accessioned
2020-12-10T14:31:50Z
dc.date.available
2020-12-09T04:15:45Z
dc.date.available
2020-12-10T14:28:18Z
dc.date.available
2020-12-10T14:31:50Z
dc.date.issued
2020-11
dc.identifier.issn
1991-7120
dc.identifier.issn
1815-2406
dc.identifier.other
10.4208/cicp.OA-2020-0130
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/455461
dc.description.abstract
One of the most challenging issues in applied mathematics is to develop and analyze algorithms which are able to approximately compute solutions of high-dimensional nonlinear partial differential equations (PDEs). In particular, it is very hard to develop approximation algorithms which do not suffer under the curse of dimensionality in the sense that the number of computational operations needed by the algorithm to compute an approximation of accuracy ε>0 grows at most polynomially in both the reciprocal 1/ε of the required accuracy and the dimension d∈N of the PDE. Recently, a new approximation method, the so-called full history recursive multilevel Picard (MLP) approximation method, has been introduced and, until today, this approximation scheme is the only approximation method in the scientific literature which has been proven to overcome the curse of dimensionality in the numerical approximation of semilinear PDEs with general time horizons. It is a key contribution of this article to extend the MLP approximation method to systems of semilinear PDEs and to numerically test it on several example PDEs. More specifically, we apply the proposed MLP approximation method in the case of Allen-Cahn PDEs, Sine-Gordon-type PDEs, systems of coupled semilinear heat PDEs, and semilinear Black-Scholes PDEs in up to 1000 dimensions. We also compare the performance of the proposed MLP approximation algorithm with a deep learning based approximation method from the scientific literature.
en_US
dc.language.iso
en
en_US
dc.publisher
Global Science Press
en_US
dc.subject
Curse of dimensionality
en_US
dc.subject
Partial differential equations
en_US
dc.subject
PDE
en_US
dc.subject
High-dimensional
en_US
dc.subject
Semilinear
en_US
dc.subject
Multilevel Picard
en_US
dc.title
Numerical Simulations for Full History Recursive Multilevel Picard Approximations for Systems of High-Dimensional Partial Differential Equations
en_US
dc.type
Journal Article
ethz.journal.title
Communications in Computational Physics
ethz.journal.volume
28
en_US
ethz.journal.issue
5
en_US
ethz.journal.abbreviated
Commun. Comput. Phys.
ethz.pages.start
2109
en_US
ethz.pages.end
2138
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Hong Kong
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02204 - RiskLab / RiskLab
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02003 - Mathematik Selbständige Professuren::09557 - Cheridito, Patrick / Cheridito, Patrick
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02204 - RiskLab / RiskLab
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02003 - Mathematik Selbständige Professuren::09557 - Cheridito, Patrick / Cheridito, Patrick
ethz.date.deposited
2020-12-09T04:15:51Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-12-10T14:28:28Z
ethz.rosetta.lastUpdated
2022-03-29T04:17:01Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Numerical%20Simulations%20for%20Full%20History%20Recursive%20Multilevel%20Picard%20Approximations%20for%20Systems%20of%20High-Dimensional%20Partial%20Differential%20Equa&rft.jtitle=Communications%20in%20Computational%20Physics&rft.date=2020-11&rft.volume=28&rft.issue=5&rft.spage=2109&rft.epage=2138&rft.issn=1991-7120&1815-2406&rft.au=Becker,%20Sebastian&Braunwarth,%20Ramon&Hutzenthaler,%20Martin&Jentzen,%20Arnulf&von%20Wurstemberger,%20Philippe&rft.genre=article&rft_id=info:doi/10.4208/cicp.OA-2020-0130&
Dateien zu diesem Eintrag
Dateien | Größe | Format | Im Viewer öffnen |
---|---|---|---|
Zu diesem Eintrag gibt es keine Dateien. |
Publikationstyp
-
Journal Article [130586]