Improving Memory Utilization in Convolutional Neural Network Accelerators
dc.contributor.author
Jokic, Petar
dc.contributor.author
Emery, Stephane
dc.contributor.author
Benini, Luca
dc.date.accessioned
2021-08-31T14:00:28Z
dc.date.available
2020-12-09T10:01:26Z
dc.date.available
2020-12-17T12:49:52Z
dc.date.available
2021-08-31T14:00:28Z
dc.date.issued
2021-09
dc.identifier.issn
1943-0663
dc.identifier.issn
1943-0671
dc.identifier.other
10.1109/LES.2020.3009924
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/455498
dc.description.abstract
While the accuracy of convolutional neural networks has achieved vast improvements by introducing larger and deeper network architectures, also the memory footprint for storing their parameters and activations has increased. This trend especially challenges power-and resource-limited accelerator designs, which are often restricted to store all network data in on-chip memory to avoid interfacing energy-hungry external memories. Maximizing the network size that fits on a given accelerator thus requires to maximize its memory utilization. While the traditionally used pingpong buffering technique is mapping subsequent activation layers to disjunctive memory regions, we propose a mapping method that allows these regions to overlap and thus utilize the memory more efficiently. This work presents the mathematical model to compute the maximum activations memory overlap and thus the lower bound of on-chip memory needed to perform layer-by-layer processing of convolutional neural networks on memory-limited accelerators. Our experiments with various real-world object detector networks show that the proposed mapping technique can decrease the activations memory by up to 32.9%, reducing the overall memory for the entire network by up to 23.9% compared to traditional pingpong buffering. For higher resolution de-noising networks, we achieve activation memory savings of 48.8%. Additionally, we implement a face detector network on an FPGA-based camera to validate these memory savings on a complete end-to-end system. © 2020 IEEE.
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.subject
Convolutional neural networks
en_US
dc.subject
Hardware accelerator
en_US
dc.subject
Memory requirements
en_US
dc.subject
Lower bound
en_US
dc.title
Improving Memory Utilization in Convolutional Neural Network Accelerators
en_US
dc.type
Journal Article
dc.date.published
2020-07-16
ethz.journal.title
IEEE Embedded Systems Letters
ethz.journal.volume
13
en_US
ethz.journal.issue
3
en_US
ethz.pages.start
77
en_US
ethz.pages.end
80
en_US
ethz.identifier.wos
ethz.publication.place
New York, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02636 - Institut für Integrierte Systeme / Integrated Systems Laboratory::03996 - Benini, Luca / Benini, Luca
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02636 - Institut für Integrierte Systeme / Integrated Systems Laboratory::03996 - Benini, Luca / Benini, Luca
en_US
ethz.date.deposited
2020-12-09T10:01:36Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-08-31T14:00:35Z
ethz.rosetta.lastUpdated
2022-03-29T11:24:31Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Improving%20Memory%20Utilization%20in%20Convolutional%20Neural%20Network%20Accelerators&rft.jtitle=IEEE%20Embedded%20Systems%20Letters&rft.date=2021-09&rft.volume=13&rft.issue=3&rft.spage=77&rft.epage=80&rft.issn=1943-0663&1943-0671&rft.au=Jokic,%20Petar&Emery,%20Stephane&Benini,%20Luca&rft.genre=article&rft_id=info:doi/10.1109/LES.2020.3009924&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Journal Article [120834]