Information Directed Sampling for Linear Partial Monitoring
dc.contributor.author
Kirschner, Johannes
dc.contributor.author
Lattimore, Tor
dc.contributor.author
Krause, Andreas
dc.contributor.editor
Abernethy, Jacob
dc.contributor.editor
Agarwal, Shivani
dc.date.accessioned
2020-12-15T06:18:34Z
dc.date.available
2020-12-14T15:27:20Z
dc.date.available
2020-12-15T06:18:34Z
dc.date.issued
2020-07-15
dc.identifier.issn
2640-3498
dc.identifier.uri
http://hdl.handle.net/20.500.11850/456260
dc.description.abstract
Partial monitoring is a rich framework for sequential decision making under uncertainty that generalizes many well known bandit models, including linear, combinatorial and dueling bandits. We introduce information directed sampling (IDS) for stochastic partial monitoring with a linear reward and observation structure. IDS achieves adaptive worst-case regret rates that depend on precise observability conditions of the game. Moreover, we prove lower bounds that classify the minimax regret of all finite games into four possible regimes. IDS achieves the optimal rate in all cases up to logarithmic factors, without tuning any hyper-parameters. We further extend our results to the contextual and the kernelized setting, which significantly increases the range of possible applications.
en_US
dc.language.iso
en
en_US
dc.publisher
PMLR
en_US
dc.subject
Information directed sampling
en_US
dc.subject
Linear partial monitoring
en_US
dc.subject
Bandits
en_US
dc.title
Information Directed Sampling for Linear Partial Monitoring
en_US
dc.type
Conference Paper
ethz.book.title
Proceedings of Thirty Third Conference on Learning Theory
en_US
ethz.journal.title
Proceedings of Machine Learning Research
ethz.journal.volume
125
en_US
ethz.pages.start
2328
en_US
ethz.pages.end
2369
en_US
ethz.event
33rd Annual Conference on Learning Theory (COLT 2020) (virtual)
en_US
ethz.event.location
Graz, Austria
en_US
ethz.event.date
July 9-12, 2020
en_US
ethz.notes
Due to the Coronavirus (COVID-19) the conference was conducted virtually.
en_US
ethz.grant
Reliable Data-Driven Decision Making in Cyber-Physical Systems
en_US
ethz.publication.place
Cambridge, MA
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::03908 - Krause, Andreas / Krause, Andreas
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::03908 - Krause, Andreas / Krause, Andreas
en_US
ethz.identifier.url
http://proceedings.mlr.press/v125/kirschner20a.html
ethz.grant.agreementno
815943
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.program
H2020
ethz.date.deposited
2020-12-14T15:27:29Z
ethz.source
BATCH
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-12-15T06:18:45Z
ethz.rosetta.lastUpdated
2021-02-15T22:31:13Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Information%20Directed%20Sampling%20for%20Linear%20Partial%20Monitoring&rft.jtitle=Proceedings%20of%20Machine%20Learning%20Research&rft.date=2020-07-15&rft.volume=125&rft.spage=2328&rft.epage=2369&rft.issn=2640-3498&rft.au=Kirschner,%20Johannes&Lattimore,%20Tor&Krause,%20Andreas&rft.genre=proceeding&rft.btitle=Proceedings%20of%20Thirty%20Third%20Conference%20on%20Learning%20Theory
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [35833]