Deep arbitrage-free learning in a generalized HJM framework via arbitrage-regularization
dc.contributor.author
Kratsios, Anastasis
dc.contributor.author
Hyndman, Cody
dc.date.accessioned
2020-12-15T09:25:59Z
dc.date.available
2020-12-15T09:25:59Z
dc.date.issued
2020-06
dc.identifier.other
10.3390/risks8020040
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/456375
dc.identifier.doi
10.3929/ethz-b-000412725
dc.description.abstract
A regularization approach to model selection, within a generalized HJM framework, is introduced, which learns the closest arbitrage-free model to a prespecified factor model. This optimization problem is represented as the limit of a one-parameter family of computationally tractable penalized model selection tasks. General theoretical results are derived and then specialized to affine term-structure models where new types of arbitrage-free machine learning models for the forward-rate curve are estimated numerically and compared to classical short-rate and the dynamic Nelson-Siegel factor models.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
MDPI
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
arbitrage-regularization
en_US
dc.subject
bond pricing
en_US
dc.subject
model selection
en_US
dc.subject
deep learning
en_US
dc.subject
dynamic PCA
en_US
dc.title
Deep arbitrage-free learning in a generalized HJM framework via arbitrage-regularization
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2020-04-23
ethz.journal.title
Risks
ethz.journal.volume
8
en_US
ethz.journal.issue
2
en_US
ethz.pages.start
40
en_US
ethz.size
30 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Basel
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02003 - Mathematik Selbständige Professuren::03845 - Teichmann, Josef / Teichmann, Josef
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02003 - Mathematik Selbständige Professuren::03845 - Teichmann, Josef / Teichmann, Josef
ethz.tag
Model selection
en_US
ethz.tag
bond pricing
en_US
ethz.tag
Deep Learning
en_US
ethz.tag
arbitrage-free regularization
en_US
ethz.date.deposited
2020-05-03T02:52:00Z
ethz.source
FORM
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-12-15T09:26:13Z
ethz.rosetta.lastUpdated
2021-02-15T22:32:01Z
ethz.rosetta.versionExported
true
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/456341
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/412725
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Deep%20arbitrage-free%20learning%20in%20a%20generalized%20HJM%20framework%20via%20arbitrage-regularization&rft.jtitle=Risks&rft.date=2020-06&rft.volume=8&rft.issue=2&rft.spage=40&rft.au=Kratsios,%20Anastasis&Hyndman,%20Cody&rft.genre=article&rft_id=info:doi/10.3390/risks8020040&
Files in this item
Publication type
-
Journal Article [132170]