Markov random walks on homogeneous spaces and Diophantine approximation on fractals
Metadata only
Datum
2020-11Typ
- Journal Article
ETH Bibliographie
yes
Altmetrics
Abstract
In the first part, using the recent measure classification results of Eskin-Lindenstrauss, we give a criterion to ensure a.s. equidistribution of empirical measures of an i.i.d. random walk on a homogeneous space G/Γ. Employing renewal and joint equidistribution arguments, this result is generalized in the second part to random walks with Markovian dependence. Finally, following a strategy of Simmons-Weiss, we apply these results to Diophantine approximation problems on fractals and show that almost every point with respect to Hausdorff measure on a graph directed self-similar set is of generic type, so, in particular, well approximable. © 2020 American Mathematical Society. Mehr anzeigen
Publikationsstatus
publishedExterne Links
Zeitschrift / Serie
Transactions of the American Mathematical SocietyBand
Seiten / Artikelnummer
Verlag
American Mathematical SocietyThema
Random walk; Homogeneous space; Markov chain; Diophantine approximation; FractalFörderung
152819 - Equidistribution and dynamics on homogeneous spaces (SNF)
178958 - Dynamics on homogeneous spaces and number theory (SNF)
Zugehörige Publikationen und Daten
Is new version of: http://hdl.handle.net/20.500.11850/391753
Is part of: https://doi.org/10.3929/ethz-b-000510184
ETH Bibliographie
yes
Altmetrics