Markov random walks on homogeneous spaces and Diophantine approximation on fractals
dc.contributor.author
Prohaska, Roland
dc.contributor.author
Sert, Çagri
dc.date.accessioned
2021-10-18T05:10:40Z
dc.date.available
2020-12-19T12:35:50Z
dc.date.available
2020-12-21T08:26:10Z
dc.date.available
2020-12-21T08:30:46Z
dc.date.available
2021-10-18T05:10:40Z
dc.date.issued
2020-11
dc.identifier.issn
1088-6850
dc.identifier.issn
0002-9947
dc.identifier.other
10.1090/tran/8181
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/457272
dc.description.abstract
In the first part, using the recent measure classification results of Eskin-Lindenstrauss, we give a criterion to ensure a.s. equidistribution of empirical measures of an i.i.d. random walk on a homogeneous space G/Γ. Employing renewal and joint equidistribution arguments, this result is generalized in the second part to random walks with Markovian dependence. Finally, following a strategy of Simmons-Weiss, we apply these results to Diophantine approximation problems on fractals and show that almost every point with respect to Hausdorff measure on a graph directed self-similar set is of generic type, so, in particular, well approximable. © 2020 American Mathematical Society.
en_US
dc.language.iso
en
en_US
dc.publisher
American Mathematical Society
en_US
dc.subject
Random walk
en_US
dc.subject
Homogeneous space
en_US
dc.subject
Markov chain
en_US
dc.subject
Diophantine approximation
en_US
dc.subject
Fractal
en_US
dc.title
Markov random walks on homogeneous spaces and Diophantine approximation on fractals
en_US
dc.type
Journal Article
dc.date.published
2020-08-28
ethz.journal.title
Transactions of the American Mathematical Society
ethz.journal.volume
373
en_US
ethz.journal.issue
11
en_US
ethz.journal.abbreviated
Trans. Amer. Math. Soc.
ethz.pages.start
8163
en_US
ethz.pages.end
8196
en_US
ethz.grant
Equidistribution and dynamics on homogeneous spaces
en_US
ethz.grant
Dynamics on homogeneous spaces and number theory
en_US
ethz.identifier.wos
ethz.publication.place
Providence
en_US
ethz.publication.status
published
en_US
ethz.grant.agreementno
152819
ethz.grant.agreementno
178958
ethz.grant.fundername
SNF
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projektförderung in Mathematik, Natur- und Ingenieurwissenschaften (Abteilung II)
ethz.grant.program
Projekte MINT
ethz.relation.isNewVersionOf
20.500.11850/391753
ethz.relation.isPartOf
10.3929/ethz-b-000510184
ethz.date.deposited
2020-12-19T12:35:53Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-12-21T08:26:30Z
ethz.rosetta.lastUpdated
2022-03-29T14:17:21Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Markov%20random%20walks%20on%20homogeneous%20spaces%20and%20Diophantine%20approximation%20on%20fractals&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.date=2020-11&rft.volume=373&rft.issue=11&rft.spage=8163&rft.epage=8196&rft.issn=1088-6850&0002-9947&rft.au=Prohaska,%20Roland&Sert,%20%C3%87agri&rft.genre=article&rft_id=info:doi/10.1090/tran/8181&
Dateien zu diesem Eintrag
Dateien | Größe | Format | Im Viewer öffnen |
---|---|---|---|
Zu diesem Eintrag gibt es keine Dateien. |
Publikationstyp
-
Journal Article [130848]