Deep neural network expression of posterior expectations in Bayesian PDE inversion
dc.contributor.author
Herrmann, Lukas
dc.contributor.author
Schwab, Christoph
dc.contributor.author
Zech, Jakob
dc.date.accessioned
2020-12-21T08:46:48Z
dc.date.available
2020-12-19T12:36:38Z
dc.date.available
2020-12-21T08:46:48Z
dc.date.issued
2020-12
dc.identifier.issn
0266-5611
dc.identifier.issn
1361-6420
dc.identifier.other
10.1088/1361-6420/abaf64
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/457275
dc.description.abstract
For Bayesian inverse problems with input-to-response maps given by well-posed partial differential equations and subject to uncertain parametric or function space input, we establish (under rather weak conditions on the 'forward', input-to-response maps) the parametric holomorphy of the data-to-QoI map relating observation data δ to the Bayesian estimate for an unknown quantity of interest (QoI). We prove exponential expression rate bounds for this data-to-QoI map by deep neural networks with rectified linear unit activation function, which are uniform with respect to the data δ taking values in a compact subset of R^K. Similar convergence rates are verified for polynomial and rational approximations of the data-to-QoI map. We discuss the extension to other activation functions, and to mere Lipschitz continuity of the data-to-QoI map. © 2020 IOP Publishing Ltd.
en_US
dc.language.iso
en
en_US
dc.publisher
Institute of Physics
en_US
dc.subject
Deep ReLU neural networks
en_US
dc.subject
Bayesian inverse problems
en_US
dc.subject
Approximation rates
en_US
dc.subject
Exponential convergence
en_US
dc.subject
Uncertainty quantification
en_US
dc.title
Deep neural network expression of posterior expectations in Bayesian PDE inversion
en_US
dc.type
Journal Article
dc.date.published
2020-12-03
ethz.journal.title
Inverse Problems
ethz.journal.volume
36
en_US
ethz.journal.issue
12
en_US
ethz.journal.abbreviated
Inverse Problems
ethz.pages.start
125011
en_US
ethz.size
32 p.
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Bristol
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03435 - Schwab, Christoph / Schwab, Christoph
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03435 - Schwab, Christoph / Schwab, Christoph
ethz.date.deposited
2020-12-19T12:36:42Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-12-21T08:46:58Z
ethz.rosetta.lastUpdated
2022-03-29T04:37:55Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Deep%20neural%20network%20expression%20of%20posterior%20expectations%20in%20Bayesian%20PDE%20inversion&rft.jtitle=Inverse%20Problems&rft.date=2020-12&rft.volume=36&rft.issue=12&rft.spage=125011&rft.issn=0266-5611&1361-6420&rft.au=Herrmann,%20Lukas&Schwab,%20Christoph&Zech,%20Jakob&rft.genre=article&rft_id=info:doi/10.1088/1361-6420/abaf64&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Journal Article [120852]