Corruption-Tolerant Gaussian Process Bandit Optimization
dc.contributor.author
Bogunovic, Ilija
dc.contributor.author
Krause, Andreas
dc.contributor.author
Scarlett, Jonathan
dc.contributor.editor
Chiappa, Silvia
dc.contributor.editor
Calandra, Roberto
dc.date.accessioned
2021-01-13T10:11:21Z
dc.date.available
2020-12-23T06:37:56Z
dc.date.available
2021-01-13T10:11:21Z
dc.date.issued
2020-03
dc.identifier.issn
2640-3498
dc.identifier.uri
http://hdl.handle.net/20.500.11850/458230
dc.description.abstract
We consider the problem of optimizing an unknown (typically non-convex) function with a bounded norm in some Reproducing Kernel Hilbert Space (RKHS), based on noisy bandit feedback. We consider a novel variant of this problem in which the point evaluations are not only corrupted by random noise, but also adversarial corruptions. We introduce an algorithm Fast-Slow GP-UCB based on Gaussian process methods, randomized selection between two instances labeled fast (but non-robust) and slow (but robust), enlarged confidence bounds, and the principle of optimism under uncertainty. We present a novel theoretical analysis upper bounding the cumulative regret in terms of the corruption level, the time horizon, and the underlying kernel, and we argue that certain dependencies cannot be improved. We observe that distinct algorithmic ideas are required depending on whether one is required to perform well in both the corrupted and non-corrupted settings, and whether the corruption level is known or not.
en_US
dc.language.iso
en
en_US
dc.publisher
PMLR
en_US
dc.title
Corruption-Tolerant Gaussian Process Bandit Optimization
en_US
dc.type
Conference Paper
dc.date.published
2020-10-09
ethz.book.title
Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS 2020)
en_US
ethz.journal.title
Proceedings of Machine Learning Research
ethz.journal.volume
109
en_US
ethz.pages.start
1071
en_US
ethz.pages.end
1081
en_US
ethz.size
10 p.
en_US
ethz.event
23rd International Conference on Artificial Intelligence and Statistics (AISTATS 2020) (virtual)
en_US
ethz.event.location
Palermo, Italy
en_US
ethz.event.date
August 26-28, 2020
en_US
ethz.notes
Due to the Coronavirus (COVID-19) the conference was conducted virtually.
en_US
ethz.grant
Big data transport models: The example of road pricing
en_US
ethz.grant
Reliable Data-Driven Decision Making in Cyber-Physical Systems
en_US
ethz.grant
Robust Sample-Efficient Learning when Data ist Costly
en_US
ethz.identifier.wos
ethz.publication.place
Cambridge, MA
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::03908 - Krause, Andreas / Krause, Andreas
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::03908 - Krause, Andreas / Krause, Andreas
en_US
ethz.identifier.url
http://proceedings.mlr.press/v108/bogunovic20a.html
ethz.grant.agreementno
167189
ethz.grant.agreementno
815943
ethz.grant.agreementno
19-2 FEL-47
ethz.grant.fundername
SNF
ethz.grant.fundername
EC
ethz.grant.fundername
ETHZ
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.funderDoi
10.13039/501100003006
ethz.grant.program
NFP 75: Gesuch
ethz.grant.program
H2020
ethz.grant.program
ETH Fellows
ethz.date.deposited
2020-10-24T06:38:33Z
ethz.source
WOS
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-12-23T06:38:06Z
ethz.rosetta.lastUpdated
2021-02-15T23:10:55Z
ethz.rosetta.versionExported
true
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/447618
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/458145
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Corruption-Tolerant%20Gaussian%20Process%20Bandit%20Optimization&rft.jtitle=Proceedings%20of%20Machine%20Learning%20Research&rft.date=2020-03&rft.volume=109&rft.spage=1071&rft.epage=1081&rft.issn=2640-3498&rft.au=Bogunovic,%20Ilija&Krause,%20Andreas&Scarlett,%20Jonathan&rft.genre=proceeding&rft.btitle=Proceedings%20of%20the%2023rd%20International%20Conference%20on%20Artificial%20Intelligence%20and%20Statistics%20(AISTATS%202020)
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [35257]