Show simple item record

dc.contributor.author
de la Hamette, Anne-Catherine
dc.contributor.author
Galley, Thomas D.
dc.date.accessioned
2021-01-04T13:34:05Z
dc.date.available
2020-12-23T08:32:24Z
dc.date.available
2021-01-04T13:33:09Z
dc.date.available
2021-01-04T13:34:05Z
dc.date.issued
2020-11-30
dc.identifier.issn
2521-327X
dc.identifier.other
10.22331/q-2020-11-30-367
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/458288
dc.identifier.doi
10.3929/ethz-b-000458288
dc.description.abstract
A fully relational quantum theory necessarily requires an account of changes of quantum reference frames, where quantum reference frames are quantum systems relative to which other systems are described. By introducing a relational formalism which identifies coordinate systems with elements of a symmetry group G, we define a general operator for reversibly changing between quantum reference frames associated to a group G. This generalises the known operator for translations and boosts to arbitrary finite and locally compact groups, including non-Abelian groups. We show under which conditions one can uniquely assign coordinate choices to physical systems (to form reference frames) and how to reversibly transform between them, providing transformations between coordinate systems which are 'in a superposition' of other coordinate systems. We obtain the change of quantum reference frame from the principles of relational physics and of coherent change of reference frame. We prove a theorem stating that the change of quantum reference frame consistent with these principles is unitary if and only if the reference systems carry the left and right regular representations of G. We also define irreversible changes of reference frame for classical and quantum systems in the case where the symmetry group G is a semidirect product G=N (sic) P or a direct product G = N x P, providing multiple examples of both reversible and irreversible changes of quantum reference system along the way. Finally, we apply the relational formalism and changes of reference frame developed in this work to the Wigner's friend scenario, finding similar conclusions to those in relational quantum mechanics using an explicit change of reference frame as opposed to indirect reasoning using measurement operators.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Quantum reference frames for general symmetry groups
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
Quantum
ethz.journal.volume
4
en_US
ethz.pages.start
367
en_US
ethz.size
22 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Wien
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2020-12-23T08:32:27Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-01-04T13:33:17Z
ethz.rosetta.lastUpdated
2023-02-06T21:13:17Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Quantum%20reference%20frames%20for%20general%20symmetry%20groups&rft.jtitle=Quantum&rft.date=2020-11-30&rft.volume=4&rft.spage=367&rft.issn=2521-327X&rft.au=de%20la%20Hamette,%20Anne-Catherine&Galley,%20Thomas%20D.&rft.genre=article&rft_id=info:doi/10.22331/q-2020-11-30-367&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record