Renormalization of crossing probabilities in the planar random-cluster model
dc.contributor.author
Duminil-Copin, Hugo
dc.contributor.author
Tassion, Vincent
dc.date.accessioned
2021-01-13T19:13:19Z
dc.date.available
2020-12-25T06:56:38Z
dc.date.available
2021-01-13T19:13:19Z
dc.date.issued
2020
dc.identifier.issn
1609-3321
dc.identifier.issn
1609-4514
dc.identifier.other
10.17323/1609-4514-2020-20-4-711-740
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/458585
dc.description.abstract
The study of crossing probabilities (i.e., probabilities of ex-istence of paths crossing rectangles) has been at the heart of the theory of two-dimensional percolation since its beginning. They may be used to prove a number of results on the model, including speed of mixing, tails of decay of the connectivity probabilities, scaling relations, etc. In this article, we develop a renormalization scheme for crossing probabilities in the two-dimensional random-cluster model. The outcome of the process is a precise description of an alternative between four behaviors: • Subcritical: Crossing probabilities, even with favorable boundary conditions, converge exponentially fast to 0. • Supercritical: Crossing probabilities, even with unfavorable boundary conditions, converge exponentially fast to 1. • Critical discontinuous: Crossing probabilities converge to 0 exponentially fast with unfavorable boundary conditions and to 1 with favorable boundary conditions. • Critical continuous: Crossing probabilities remain bounded away from 0 and 1 uniformly in the boundary conditions. The approach does not rely on self-duality, enabling it to apply in a much larger generality, including the random-cluster model on arbitrary graphs with sufficient symmetry, but also other models like certain random height models. © 2020 Independent University of Moscow
en_US
dc.language.iso
en
en_US
dc.publisher
Independent University of Moscow
en_US
dc.title
Renormalization of crossing probabilities in the planar random-cluster model
en_US
dc.type
Journal Article
ethz.journal.title
Moscow Mathematical Journal
ethz.journal.volume
20
en_US
ethz.journal.issue
4
en_US
ethz.journal.abbreviated
Mosc. math. j.
ethz.pages.start
711
en_US
ethz.pages.end
740
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Moscow
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02003 - Mathematik Selbständige Professuren::09584 - Tassion, Vincent / Tassion, Vincent
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02003 - Mathematik Selbständige Professuren::09584 - Tassion, Vincent / Tassion, Vincent
ethz.date.deposited
2020-12-25T06:56:43Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-01-13T19:13:33Z
ethz.rosetta.lastUpdated
2021-02-15T23:12:12Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Renormalization%20of%20crossing%20probabilities%20in%20the%20planar%20random-cluster%20model&rft.jtitle=Moscow%20Mathematical%20Journal&rft.date=2020&rft.volume=20&rft.issue=4&rft.spage=711&rft.epage=740&rft.issn=1609-3321&1609-4514&rft.au=Duminil-Copin,%20Hugo&Tassion,%20Vincent&rft.genre=article&rft_id=info:doi/10.17323/1609-4514-2020-20-4-711-740&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Journal Article [130488]