Show simple item record

dc.contributor.author
Elmanto, Elden
dc.contributor.author
Hoyois, Marc
dc.contributor.author
Khan, Adeel A.
dc.contributor.author
Sosnilo, Vladimir
dc.contributor.author
Yakerson, Maria
dc.date.accessioned
2021-01-08T13:35:30Z
dc.date.available
2020-12-31T03:29:51Z
dc.date.available
2021-01-08T13:35:30Z
dc.date.issued
2020-12-17
dc.identifier.issn
2050-5086
dc.identifier.other
10.1017/fmp.2020.13
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/458760
dc.identifier.doi
10.3929/ethz-b-000458760
dc.description.abstract
We prove that the infinity-category of MGL-modules over any scheme is equivalent to the infinity-category of motivic spectra with finite syntomic transfers. Using the recognition principle for infinite P-1-loop spaces, we deduce that very effective MGL-modules over a perfect field are equivalent to grouplike motivic spaces with finite syntomic transfers. Along the way, we describe any motivic Thom spectrum built from virtual vector bundles of nonnegative rank in terms of the moduli stack of finite quasi-smooth derived schemes with the corresponding tangential structure. In particular, over a regular equicharacteristic base, we show that Omega(infinity)(P1) MGL is the A(1)-homotopy type of the moduli stack of virtual finite flat local complete intersections, and that for n > 0, Omega(infinity)(P1) Sigma(n)(P1) MGL is the A(1)-homotopy type of the moduli stack of finite quasi-smooth derived schemes of virtual dimension -n.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Cambridge University Press
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Modules over algebraic cobordism
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
Forum of Mathematics, Pi
ethz.journal.volume
8
en_US
ethz.pages.start
e14
en_US
ethz.size
44 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.publication.place
Cambridge
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02500 - Forschungsinstitut für Mathematik / Institute for Mathematical Research
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02500 - Forschungsinstitut für Mathematik / Institute for Mathematical Research
ethz.date.deposited
2020-12-31T03:29:55Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-01-08T13:35:38Z
ethz.rosetta.lastUpdated
2022-03-29T04:44:55Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Modules%20over%20algebraic%20cobordism&rft.jtitle=Forum%20of%20Mathematics,%20Pi&rft.date=2020-12-17&rft.volume=8&rft.spage=e14&rft.issn=2050-5086&rft.au=Elmanto,%20Elden&Hoyois,%20Marc&Khan,%20Adeel%20A.&Sosnilo,%20Vladimir&Yakerson,%20Maria&rft.genre=article&rft_id=info:doi/10.1017/fmp.2020.13&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record