Neural collaborative filtering for unsupervised mitral valve segmentation in echocardiography
dc.contributor.author
Corinzia, Luca
dc.contributor.author
Laumer, Fabian
dc.contributor.author
Candreva, Alessandro
dc.contributor.author
Taramasso, Maurizio
dc.contributor.author
Maisano, Francesco
dc.contributor.author
Buhmann, Joachim M.
dc.date.accessioned
2021-01-05T09:19:35Z
dc.date.available
2021-01-05T09:19:35Z
dc.date.issued
2020-11
dc.identifier.issn
0933-3657
dc.identifier.other
10.1016/j.artmed.2020.101975
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/459332
dc.description.abstract
The segmentation of the mitral valve annulus and leaflets specifies a crucial first step to establish a machine learning pipeline that can support physicians in performing multiple tasks, e.g. diagnosis of mitral valve diseases, surgical planning, and intraoperative procedures. Current methods for mitral valve segmentation on 2D echocardiography videos require extensive interaction with annotators and perform poorly on low-quality and noisy videos. We propose an automated and unsupervised method for the mitral valve segmentation based on a low dimensional embedding of the echocardiography videos using neural network collaborative filtering. The method is evaluated in a collection of echocardiography videos of patients with a variety of mitral valve diseases, and additionally on an independent test cohort. It outperforms state-of-the-art unsupervised and supervised methods on low-quality videos or in the case of sparse annotation. © 2020 Elsevier B.V.
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.subject
Mitral valve
en_US
dc.subject
Segmentation
en_US
dc.subject
Collaborative filtering
en_US
dc.subject
Neural network
en_US
dc.title
Neural collaborative filtering for unsupervised mitral valve segmentation in echocardiography
en_US
dc.type
Journal Article
dc.date.published
2020-10-21
ethz.journal.title
Artificial intelligence in medicine
ethz.journal.volume
110
en_US
ethz.journal.abbreviated
Artif Intell Med
ethz.pages.start
101975
en_US
ethz.size
20 p.
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Amsterdam
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::03659 - Buhmann, Joachim M. (emeritus) / Buhmann, Joachim M. (emeritus)
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00003 - Schulleitung und Dienste::00022 - Bereich VP Forschung / Domain VP Research::02803 - Collegium Helveticum / Collegium Helveticum
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::03659 - Buhmann, Joachim M. (emeritus) / Buhmann, Joachim M. (emeritus)
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00003 - Schulleitung und Dienste::00022 - Bereich VP Forschung / Domain VP Research::02803 - Collegium Helveticum / Collegium Helveticum
ethz.date.deposited
2020-11-23T03:51:22Z
ethz.source
SCOPUS
ethz.source
BATCH
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-01-05T09:19:44Z
ethz.rosetta.lastUpdated
2022-03-29T04:41:14Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/452342
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/457721
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Neural%20collaborative%20filtering%20for%20unsupervised%20mitral%20valve%20segmentation%20in%20echocardiography&rft.jtitle=Artificial%20intelligence%20in%20medicine&rft.date=2020-11&rft.volume=110&rft.spage=101975&rft.issn=0933-3657&rft.au=Corinzia,%20Luca&Laumer,%20Fabian&Candreva,%20Alessandro&Taramasso,%20Maurizio&Maisano,%20Francesco&rft.genre=article&rft_id=info:doi/10.1016/j.artmed.2020.101975&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Journal Article [132998]