First-Kind Boundary Integral Equations for the Dirac Operator in 3d Lipschitz Domains
dc.contributor.author
Schulz, Erick
dc.contributor.author
Hiptmair, Ralf
dc.date.accessioned
2021-02-03T07:29:57Z
dc.date.available
2021-01-05T15:23:08Z
dc.date.available
2021-01-13T08:11:09Z
dc.date.available
2021-02-03T07:29:57Z
dc.date.issued
2020-12
dc.identifier.uri
http://hdl.handle.net/20.500.11850/459643
dc.description.abstract
We develop novel first-kind boundary integral equations for Euclidean Dirac operators in 3D Lipschitz domains comprising square-integrable potentials and involving only weakly singular kernels. Generalized Garding inequalities are derived and we establish that the obtained boundary integral operators are Fredholm of index zero. Their finite dimensional kernels are characterized and we show that their dimension is equal to the number of topological invariants of the domain’s boundary, in other words to the sum of its Betti numbers. This is explained by the fundamental discovery that the associated bilinear forms agree with those induced by the 2D surface Dirac operators for H−1/2 surface de Rham Hilbert complexes whose underlying inner-products are the non-local inner products defined through the classical single-layer boundary integral operators for the Laplacian. Decay conditions for well-posedness in natural energy spaces of the Dirac system in unbounded exterior domains are also presented.
en_US
dc.language.iso
en
en_US
dc.publisher
Seminar for Applied Mathematics, ETH Zurich
en_US
dc.subject
Dirac
en_US
dc.subject
Hodge-Dirac
en_US
dc.subject
Potential representation
en_US
dc.subject
Representation formula
en_US
dc.subject
Jump relations
en_US
dc.subject
First-kind boundary integral operators
en_US
dc.subject
Boundary integral equations
en_US
dc.subject
Surface Dirac operators
en_US
dc.subject
Coercivity
en_US
dc.title
First-Kind Boundary Integral Equations for the Dirac Operator in 3d Lipschitz Domains
en_US
dc.type
Report
ethz.journal.title
SAM Research Report
ethz.journal.volume
2020-69
en_US
ethz.size
28 p.
en_US
ethz.grant
Novel Boundary Element Methods for Electromagnetics
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03632 - Hiptmair, Ralf / Hiptmair, Ralf
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03632 - Hiptmair, Ralf / Hiptmair, Ralf
en_US
ethz.identifier.url
https://math.ethz.ch/sam/research/reports.html?id=942
ethz.grant.agreementno
184848
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projekte MINT
ethz.date.deposited
2021-01-05T15:23:14Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.identifier.internal
https://math.ethz.ch/sam/research/reports.html?id=942
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-01-13T08:11:17Z
ethz.rosetta.lastUpdated
2022-03-29T05:03:27Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=First-Kind%20Boundary%20Integral%20Equations%20for%20the%20Dirac%20Operator%20in%203d%20Lipschitz%20Domains&rft.jtitle=SAM%20Research%20Report&rft.date=2020-12&rft.volume=2020-69&rft.au=Schulz,%20Erick&Hiptmair,%20Ralf&rft.genre=report&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Report [6869]