Show simple item record

dc.contributor.author
Strümpler, Yannick
dc.contributor.author
Yang, Ren
dc.contributor.author
Timofte, Radu
dc.contributor.editor
Bartoli, Adrien
dc.contributor.editor
Fusiello, Andrea
dc.date.accessioned
2021-01-06T06:06:31Z
dc.date.available
2021-01-05T16:06:46Z
dc.date.available
2021-01-06T06:06:31Z
dc.date.issued
2020
dc.identifier.isbn
978-3-030-66822-8
en_US
dc.identifier.isbn
978-3-030-66823-5
en_US
dc.identifier.issn
0302-9743
dc.identifier.issn
1611-3349
dc.identifier.other
10.1007/978-3-030-66823-5_12
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/459661
dc.identifier.doi
10.3929/ethz-b-000459661
dc.description.abstract
In recent years we have witnessed an increasing interest in applying Deep Neural Networks (DNNs) to improve the rate-distortion performance in image compression. However, the existing approaches either train a post-processing DNN on the decoder side, or propose learning for image compression in an end-to-end manner. This way, the trained DNNs are required in the decoder, leading to the incompatibility to the standard image decoders (e.g., JPEG) in personal computers and mobiles. Therefore, we propose learning to improve the encoding performance with the standard decoder. In this paper, We work on JPEG as an example. Specifically, a frequency-domain pre-editing method is proposed to optimize the distribution of DCT coefficients, aiming at facilitating the JPEG compression. Moreover, we propose learning the JPEG quantization table jointly with the pre-editing network. Most importantly, we do not modify the JPEG decoder and therefore our approach is applicable when viewing images with the widely used standard JPEG decoder. The experiments validate that our approach successfully improves the rate-distortion performance of JPEG in terms of various quality metrics, such as PSNR, MS-SSIM and LPIPS. Visually, this translates to better overall color retention especially when strong compression is applied.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Springer
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
Learning to Improve Image Compression Without Changing the Standard Decoder
en_US
dc.type
Conference Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2021-01-03
ethz.book.title
Computer Vision – ECCV 2020 Workshops Glasgow, UK, August 23–28, 2020, Proceedings, Part IV
en_US
ethz.journal.title
Lecture Notes in Computer Science
ethz.journal.volume
12538
en_US
ethz.journal.abbreviated
LNCS
ethz.pages.start
200
en_US
ethz.pages.end
216
en_US
ethz.size
17 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.event
16th European Conference on Computer Vision (ECCV 2020) (virtual)
en_US
ethz.event.location
Glasgow, United Kingdom
en_US
ethz.event.date
August 23–28, 2020
en_US
ethz.notes
Due to the Coronavirus (COVID-19) the conference was conducted virtually.
en_US
ethz.publication.place
Cham
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02652 - Institut für Bildverarbeitung / Computer Vision Laboratory::03514 - Van Gool, Luc (emeritus) / Van Gool, Luc (emeritus)
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02652 - Institut für Bildverarbeitung / Computer Vision Laboratory::03514 - Van Gool, Luc (emeritus) / Van Gool, Luc (emeritus)
en_US
ethz.date.deposited
2021-01-05T16:06:53Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-01-06T06:06:39Z
ethz.rosetta.lastUpdated
2024-02-02T12:45:59Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Learning%20to%20Improve%20Image%20Compression%20Without%20Changing%20the%20Standard%20Decoder&rft.jtitle=Lecture%20Notes%20in%20Computer%20Science&rft.date=2020&rft.volume=12538&rft.spage=200&rft.epage=216&rft.issn=0302-9743&1611-3349&rft.au=Str%C3%BCmpler,%20Yannick&Yang,%20Ren&Timofte,%20Radu&rft.isbn=978-3-030-66822-8&978-3-030-66823-5&rft.genre=proceeding&rft_id=info:doi/10.1007/978-3-030-66823-5_12&rft.btitle=Computer%20Vision%20%E2%80%93%20ECCV%202020%20Workshops%20Glasgow,%20UK,%20August%2023%E2%80%9328,%202020,%20Proceedings,%20Part%20IV
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record