Ultra-fast geochemical calculations in reactive transport modeling with on-demand learning algorithms
dc.contributor.author
Moreira Mulin Leal, Allan
dc.contributor.author
Kyas, Svetlana
dc.contributor.author
Kulik, Dmitrii A.
dc.contributor.author
Saar, Martin O.
dc.date.accessioned
2021-03-02T10:08:30Z
dc.date.available
2021-01-07T08:51:28Z
dc.date.available
2021-03-02T10:08:30Z
dc.date.issued
2020-12
dc.identifier.uri
http://hdl.handle.net/20.500.11850/460113
dc.description.abstract
Reactive transport simulations are in general time-consuming due to costly geochemical equilibrium and/or kinetics calculations. These may account for over 99% of all computing costs when complex chemical systems are considered, because those computations are needed one or more times in each cell of high-resolution meshes, at every time step of the simulation. To reduce their computing cost by orders of magnitude, we present an on-demand learning strategy that enables geochemical calculations to be rapidly and accurately predicted using previously learned geochemical states. We use sensitivity derivatives combined with first-order Taylor estimations to achieve these fast computations. These derivatives enable a complete bypass of expensive operations such as evaluation of thermodynamic properties (e.g., species activities, fugacities, equations of state), solution of matrix equations in each Newton iteration, time integration of ordinary differential equations, and more. We present reactive transport simulations, considering realistic chemical systems and strong non-ideal thermodynamic behavior, in which geochemical calculations were speed up by a factor of 100 to 200 using this on-demand learning algorithm.
dc.language.iso
en
en_US
dc.publisher
CMWR 2020
en_US
dc.subject
Geochemical reaction calculations
en_US
dc.subject
Reactive transport modeling
en_US
dc.subject
Multiphase chemical systems
en_US
dc.subject
Chemical equilibrium and kinetics
en_US
dc.subject
On-demand machine learning
en_US
dc.title
Ultra-fast geochemical calculations in reactive transport modeling with on-demand learning algorithms
en_US
dc.type
Other Conference Item
ethz.book.title
Computational Methods in Water Resources XXIII (CMWR 2020). Proceedings
en_US
ethz.pages.start
106
en_US
ethz.size
2 p.
en_US
ethz.event
Computational Methods in Water Resources XXIII (CMWR 2020) (virtual)
en_US
ethz.event.location
Stanford, CA, USA
en_US
ethz.event.date
December 14-17, 2020
en_US
ethz.notes
Conference lecture held on December 17, 2020. Due to the Coronavirus (COVID-19) the conference was conducted virtually.
en_US
ethz.publication.place
Stanford, CA
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02330 - Dep. Erdwissenschaften / Dep. of Earth Sciences::02506 - Institut für Geophysik / Institute of Geophysics::09494 - Saar, Martin O. / Saar, Martin O.
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02330 - Dep. Erdwissenschaften / Dep. of Earth Sciences::02506 - Institut für Geophysik / Institute of Geophysics::09494 - Saar, Martin O. / Saar, Martin O.
en_US
ethz.identifier.url
https://cmwrconference.org/program/proceedings/
ethz.date.deposited
2021-01-07T08:51:36Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-03-02T10:08:39Z
ethz.rosetta.lastUpdated
2022-03-29T05:32:42Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Ultra-fast%20geochemical%20calculations%20in%20reactive%20transport%20modeling%20with%20on-demand%20learning%20algorithms&rft.date=2020-12&rft.spage=106&rft.au=Moreira%20Mulin%20Leal,%20Allan&Kyas,%20Svetlana&Kulik,%20Dmitrii%20A.&Saar,%20Martin%20O.&rft.genre=unknown&rft.btitle=Computational%20Methods%20in%20Water%20Resources%20XXIII%20(CMWR%202020).%20Proceedings
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Other Conference Item [17985]