Metadata only
Author
Date
2020-12-10Type
- Working Paper
ETH Bibliography
yes
Altmetrics
Abstract
I show that non-decreasing entropy provides a necessary and sufficient condition to convert the state of a physical system into a different state by a reversible transformation that acts on the system of interest and a further "catalyst" whose state has to remain invariant exactly in the transition. This statement is proven both in the case of finite-dimensional quantum mechanics, where von Neumann entropy is the relevant entropy, and in the case of systems whose states are described by probability distributions on finite sample spaces, where Shannon entropy is the relevant entropy. The results give an affirmative resolution to the (approximate) "catalytic entropy conjecture" introduced by Boes et al. [PRL 122, 210402 (2019)]. They provide a complete single-shot characterization without external randomness of von Neumann entropy and Shannon entropy. Show more
Publication status
publishedExternal links
Journal / series
arXivPages / Article No.
Publisher
Cornell UniversityOrganisational unit
03781 - Renner, Renato / Renner, Renato
Related publications and datasets
Is previous version of: http://hdl.handle.net/20.500.11850/525972
More
Show all metadata
ETH Bibliography
yes
Altmetrics