Energy-Based Models for Deep Probabilistic Regression
dc.contributor.author
Gustafsson, Fredrik K.
dc.contributor.author
Danelljan, Martin
dc.contributor.author
Bhat, Goutam
dc.contributor.author
Schön, Thomas B.
dc.contributor.editor
Vedaldi, Andrea
dc.contributor.editor
Bischof, Horst
dc.contributor.editor
Brox, Thomas
dc.contributor.editor
Frahm, Jan-Michael
dc.date.accessioned
2021-01-11T14:34:54Z
dc.date.available
2021-01-10T21:36:35Z
dc.date.available
2021-01-11T14:34:54Z
dc.date.issued
2020
dc.identifier.isbn
978-3-030-58564-8
en_US
dc.identifier.isbn
978-3-030-58565-5
en_US
dc.identifier.issn
0302-9743
dc.identifier.issn
1611-3349
dc.identifier.other
10.1007/978-3-030-58565-5_20
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/460908
dc.description.abstract
While deep learning-based classification is generally tackled using standardized approaches, a wide variety of techniques are employed for regression. In computer vision, one particularly popular such technique is that of confidence-based regression, which entails predicting a confidence value for each input-target pair (x, y). While this approach has demonstrated impressive results, it requires important task-dependent design choices, and the predicted confidences lack a natural probabilistic meaning. We address these issues by proposing a general and conceptually simple regression method with a clear probabilistic interpretation. In our proposed approach, we create an energy-based model of the conditional target density p(y|x), using a deep neural network to predict the un-normalized density from (x, y). This model of p(y|x) is trained by directly minimizing the associated negative log-likelihood, approximated using Monte Carlo sampling. We perform comprehensive experiments on four computer vision regression tasks. Our approach outperforms direct regression, as well as other probabilistic and confidence-based methods. Notably, our model achieves a 2.2% AP improvement over Faster-RCNN for object detection on the COCO dataset, and sets a new state-of-the-art on visual tracking when applied for bounding box estimation. In contrast to confidence-based methods, our approach is also shown to be directly applicable to more general tasks such as age and head-pose estimation. Code is available at https://github.com/fregu856/ebms_regression.
en_US
dc.language.iso
en
en_US
dc.publisher
Springer
en_US
dc.title
Energy-Based Models for Deep Probabilistic Regression
en_US
dc.type
Conference Paper
dc.date.published
2020-11-12
ethz.book.title
Computer Vision – ECCV 2020
en_US
ethz.journal.title
Lecture Notes in Computer Science
ethz.journal.volume
12365
en_US
ethz.journal.abbreviated
LNCS
ethz.pages.start
325
en_US
ethz.pages.end
343
en_US
ethz.event
16th European Conference on Computer Vision (ECCV 2020) (virtual)
en_US
ethz.event.location
Glasgow, United Kingdom
en_US
ethz.event.date
August 23-28, 2020
en_US
ethz.notes
Due to the Coronavirus (COVID-19) the conference was conducted virtually.
en_US
ethz.publication.place
Cham
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02652 - Institut für Bildverarbeitung / Computer Vision Laboratory::03514 - Van Gool, Luc (emeritus) / Van Gool, Luc (emeritus)
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02652 - Institut für Bildverarbeitung / Computer Vision Laboratory::03514 - Van Gool, Luc (emeritus) / Van Gool, Luc (emeritus)
en_US
ethz.date.deposited
2021-01-10T21:36:43Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-01-11T14:35:06Z
ethz.rosetta.lastUpdated
2021-02-15T23:07:19Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Energy-Based%20Models%20for%20Deep%20Probabilistic%20Regression&rft.jtitle=Lecture%20Notes%20in%20Computer%20Science&rft.date=2020&rft.volume=12365&rft.spage=325&rft.epage=343&rft.issn=0302-9743&1611-3349&rft.au=Gustafsson,%20Fredrik%20K.&Danelljan,%20Martin&Bhat,%20Goutam&Sch%C3%B6n,%20Thomas%20B.&rft.isbn=978-3-030-58564-8&978-3-030-58565-5&rft.genre=proceeding&rft_id=info:doi/10.1007/978-3-030-58565-5_20&rft.btitle=Computer%20Vision%20%E2%80%93%20ECCV%202020
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [35255]