NATSA: A Near-Data Processing Accelerator for Time Series Analysis
dc.contributor.author
Fernandez, Ivan
dc.contributor.author
Quislant, Ricardo
dc.contributor.author
Giannoula, Christina
dc.contributor.author
Alser, Mohammed
dc.contributor.author
Gómez-Luna, Juan
dc.contributor.author
Gutierrez, Eladio
dc.contributor.author
Plata, Oscar
dc.contributor.author
Mutlu, Onur
dc.date.accessioned
2021-01-26T13:28:34Z
dc.date.available
2021-01-12T03:49:00Z
dc.date.available
2021-01-19T15:21:08Z
dc.date.available
2021-01-26T13:28:34Z
dc.date.issued
2020
dc.identifier.isbn
978-1-7281-9710-4
en_US
dc.identifier.isbn
978-1-7281-9711-1
en_US
dc.identifier.other
10.1109/ICCD50377.2020.00035
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/461463
dc.description.abstract
Time series analysis is a key technique for extracting and predicting events in domains as diverse as epidemiology, genomics, neuroscience, environmental sciences, economics, and more. Matrix profile, the state-of-the-art algorithm to perform time series analysis, computes the most similar subsequence for a given query subsequence within a sliced time series. Matrix profile has low arithmetic intensity, but it typically operates on large amounts of time series data. In current computing systems, this data needs to be moved between the off-chip memory units and the on-chip computation units for performing matrix profile. This causes a major performance bottleneck as data movement is extremely costly in terms of both execution time and energy. In this work, we present NATSA, the first Near-Data Processing accelerator for time series analysis. The key idea is to exploit modern 3D-stacked High Bandwidth Memory (HBM) to enable efficient and fast specialized matrix profile computation near memory, where time series data resides. NATSA provides three key benefits: 1) quickly computing the matrix profile for a wide range of applications by building specialized energy-efficient floating-point arithmetic processing units close to HBM, 2) improving the energy efficiency and execution time by reducing the need for data movement over slow and energy-hungry buses between the computation units and the memory units, and 3) analyzing time series data at scale by exploiting low-latency, high-bandwidth, and energy-efficient memory access provided by HBM. Our experimental evaluation shows that NATSA improves performance by up to 14.2× (9.9× on average) and reduces energy by up to 27.2 × (19.4 × on average), over the state-of-the-art multi-core implementation. NATSA also improves performance by 6.3 × and reduces energy by 10.2 × over a general-purpose NDP platform with 64 in-order cores. © 2020 IEEE.
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.title
NATSA: A Near-Data Processing Accelerator for Time Series Analysis
en_US
dc.type
Conference Paper
dc.date.published
2020-12-21
ethz.book.title
2020 IEEE 38th International Conference on Computer Design (ICCD)
en_US
ethz.pages.start
120
en_US
ethz.pages.end
129
en_US
ethz.event
38th IEEE International Conference on Computer Design (ICCD 2020) (virtual)
en_US
ethz.event.location
Hartford, CT, USA
en_US
ethz.event.date
October 18-21, 2020
en_US
ethz.notes
Due to the Coronavirus (COVID-19) the conference was conducted virtually.
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::09483 - Mutlu, Onur / Mutlu, Onur
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::09483 - Mutlu, Onur / Mutlu, Onur
ethz.date.deposited
2021-01-12T03:49:08Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-01-19T15:21:20Z
ethz.rosetta.lastUpdated
2022-03-29T04:58:39Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=NATSA:%20A%20Near-Data%20Processing%20Accelerator%20for%20Time%20Series%20Analysis&rft.date=2020&rft.spage=120&rft.epage=129&rft.au=Fernandez,%20Ivan&Quislant,%20Ricardo&Giannoula,%20Christina&Alser,%20Mohammed&G%C3%B3mez-Luna,%20Juan&rft.isbn=978-1-7281-9710-4&978-1-7281-9711-1&rft.genre=proceeding&rft_id=info:doi/10.1109/ICCD50377.2020.00035&rft.btitle=2020%20IEEE%2038th%20International%20Conference%20on%20Computer%20Design%20(ICCD)
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [33120]